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Purposes of Research

Purposes of research

For non-binary low-density parity-check (LDPC) matrices over general
linear (GL) groups over the q-ary memoryless symmetric (q-MS) channels
under belief propagation (BP) decoding,

we propose a method to lower the error floors,

we analyze the decoding error rates in the error floors.

Contribution of the research

MBIOS channel q-MS channel

LDPC matrices over GF [NKS2011] This research

LDPC matrices over GL group This research This research

GF : Galois field
MBIOS channel : Memoryless binary-input output-symmetric channel

[NKS2011] T. Nozaki, K. Kasai, and K. Sakaniwa, “Analysis of Error Floors of

Non-binary LDPC Codes over MBIOS Channel,” IEICE Trans. Fundamentals,

vol. E94-A, no. 11, pp.2144–2152, Nov. 2011.
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Non-binary LDPC Codes

GL group GL(m3, F2m4 ) is the set of m3 × m3 invertible matrices over F2m4 .

Non-binary LDPC matrices over general linear group

{

(x1,x2, . . . ,xN ) ∈ (Fm
2 )N |

∑

i∈Nc(j)
Hj,ix

T
i = 0

T ∀j ∈ {1, . . . ,M}
}

Let Nc(j) be the set of variable nodes
connecting to the j-th check node.

Hi,j ∈ F2m Hi,j ∈ GL(m3, F2m4 ) Hi,j ∈ GL(m, F2)
matrices over GF matrices over GL group

Decoding
complexity

low middle high

Performance
on waterfall

low unknown high

Performance
on error floor

unknown unknown unknown
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Channel Model

q-MS channel [HSS2008]

X : input alphabet Y : output alphabet
q-ary memoryless channel is symmetric if there exists T : Y × X → Y s.t.

∀x ∈ X , T (·, x) : Y → Y is bijection

∀x ∈ X , Jacobian of T (·, x) : Y → Y is 1 (if Y is continuous)

∀x1, x2 ∈ X , ∀y ∈ Y, p(y | x1) = p(T (y, x2 − x1) | x2)

[Lemma 1] All-zero codeword assumption

The decoding error rate of the LDPC code over GL(m3, F2m4 ) through
the 2m1 -MS channel under BP decoding is independent of the sending
codeword.

[HSS2008] E. Hof, I. Sason, and S. Shamai, “Performance bounds for non-binary linear

block codes over memoryless symmetric channels,” IEEE trans. on IT, Mar. 2008
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Examples of q-MS channels

Examples of q-MS channels

memoryless binary input output symmetric (MBIOS) channels

binary erasure channel (BEC)
binary symmetric channel (BSC)
binary additive white Gaussian noise (BAWGN) channel

q-ary symmetric channel (q-SC)

p(y | x) =

{

1 − ǫ, if y = x,

ǫ/(q − 1), if y 6= x.
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Channel Outputs to a Variable Node

We parameterize the number of channel outputs assigned to a variable
node.
In the case for m = 6

26-MS channel

23-MS channel

22-MS channel

2-MS channel
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Error Floors and Zigzag Cycles

Error floors are mainly caused by small weight errors.

[Definition] Zigzag cycle

Zigzag cycles are circuit in the Tanner graph such that all the variable
nodes are of degree two.
Property: Zigzag cycles cause small weight errors.
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Methods to Lower Error Floors

To lower the error floors, we need to optimize the zigzag cycle.

Optimization of zigzag cycles

Optimize the structure of Tanner graph
→ (e.g.) Progressive edge growth [HEA2005] removes the zigzag
cycles of small weight from Tanner graph.

Optimize the labels in the zigzag cycles
→ This research optimizes the labels in the zigzag cycles to lower the
decoding error rates in the zigzag cycles.

[HEA2005] X.Y. Hu, E. Eleftherious, and D. Arnold, “Regular and irregular progressive
edge-growth Tanner graphs,” IEEE Trans. Inf. Theory, vol. 51, no. 1, pp. 386–396,
Jan. 2005
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Optimization of Labels to Lower Error Floors

For zigzag cycle with labels H1,1,H1,2,H2,2, . . . ,Hw,w,Hw,1,
define χ := H−1

1,1H1,2H
−1
2,2 · · ·H

−1
w,wHw,1.

The order σ of χ is the smallest integer s.t. χσ is identify matrix.

Label selection to lower the error floors

Optimize labels in the zigzag cycles satisfying σ = 2m3m4 − 1 to lower the
error floors for non-binary LDPC code over GL(m3, F2m4 ).

Outline of proof

1 [Theorem 1] shows the condition for the
successful decoding of the zigzag cycles.

2 [Corollary 1] gives the zigzag cycles which
have the best decoding performance.

3 [Lemma 2] gives the relation between
condition in [Corollary 1] and order of χ.
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Outline of Proof (1)

[Definition] Orbit

Let 〈χ〉 be the cyclic subgroup generated by χ ∈ GL(m3, F2m4 ), i.e.,
〈χ〉 := {χj | j = 0, 1, . . . }.
Define the orbit of x ∈ F

m3

2m4 under 〈χ〉 as 〈χ〉x := {gx | g ∈ 〈χ〉}.

The set of orbits of x ∈ F
m3

2m4 \{0} under 〈χ〉 forms partition of F
m3

2m4 \{0}.
A set of class representatives Sχ is a subset of F

m3

2m4 \ {0} which contains
exactly one elements from each orbit.
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Outline of Proof (2)

Let Ci(x) be the initial message from i-th variable node in the BP decoder
for x ∈ F

m3

2m4 .

[Theorem 1] Condition for successful decoding

Consider the zigzag cycle of weight w with χ = H−1
1,1H1,2 · · ·H

−1
w,wHw,1.

All the symbols in the zigzag cycles are successful decoded iff

|〈χ〉x|−1
∏

t=0

w
∏

s=1

Cs(0) >

|〈χ〉x|−1
∏

t=0

w
∏

s=1

Cs

((

∏w
j=s ιj

)

χtx
)

∀x ∈ Sχ.

No symbols in the zigzag cycles are successful decoded iff

|〈χ〉x|−1
∏

t=0

w
∏

s=1

Cs(0) ≤

|〈χ〉x|−1
∏

t=0

w
∏

s=1

Cs

((

∏w
j=s ιj

)

χtx
)

∃x ∈ Sχ.
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Outline of Proof (3)

[Corollary 1] Zigzag cycles having best performance

The zigzag cycles with χ s.t. |Sχ| = 1 have the best decoding performance
in the zigzag cycles for a fixed weight.

[Lemma 2] Relation between orbit and order

The order of χ ∈ GL(m3, F2m4 ) is 2m3m4 − 1 iff |Sχ| = 1.

The zigzag cycles with χ of order 2m3m4 − 1 have the best decoding
performance in the zigzag cycles for a fixed weight.
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Condition for Decoding Failure

[Definition] Log-likelihood ratio (LLR)

Assume the 2m1-MS channel.
For γ ∈ X = F

m1

2 , the LLR Zv,i(yv,i, γ) corresponding to the i-th channel
output yv,i in the v-th variable node is defined as

Zv,i(yv,i, γ) = log
p(yv,i | 0)

p(yv,i | γ)
.

[Corollary 2] Condition for decoding failure for zigzag cycles

We consider the zigzag cycle of weight w with the matrix χ of order
2m3m4 − 1.
No symbols in the zigzag cycle are successfully decoded iff

w
∑

v=1

m2
∑

i=1

∑

γ∈F
m1
2 \{0}

Zv,i(yv,i, γ) ≤ 0.
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L-Density and Bhattacharyya Functional

[Definition] L-density for 2m1-MS channels

Define the random variable

L(Y ) :=
∑

γ∈F
m1
2 \{0}

log
p(Y | 0)

p(Y | γ)
.

Let a(x) be the density function of L(Y ). We refer a(x) as L-density.

The 2m1 -MS channels are characterized by L-density.

[Definition] Bhattacharyya functional

For a L-density a(x), the Bhattacharyya functional B(a) is defined as

B(a) =

∫ ∞

−∞
a(x) exp[−x/2]dx.
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Decoding Error Rate of Zigzag Cycle

[Corollary 3] Decoding error rate of zigzag cycle

Let m = m1m2 = m3m4.
Let Pzc(w,m1,m2, a) be the symbol error rate for the zigzag cycle of
weight w with χ of order 2m − 1 over the 2m1 -MS channel with L-density
a(x) under BP decoding.
Define Z(k) =

∑k
i=1 Zi, where Z1, Z2, . . . , Zk denote i.i.d. random variable

with L-density a(x). Then

Pzc(w,m1,m2, a) = Pr(Z(wm2) ≤ 0) ≤ B(a)wm2 .

Note: For a fixed m = m3m4, the decoding error rate of zigzag cycles are
independent from m3 and m4.

Nozaki et al. (Titech) Analysis of EF for non-binary LDPC code July 5, 2012 18 / 22



Lower Bound of Error Floor

Consider the LDPC codes designed by proposed method.

[Theorem 2] Lower bound of error floors for non-binary LDPC codes

Let wg be the minimum weight of the zigzag cycle in the LDPC code
ensemble.
Define µ := λ′(0)ρ′(1), where (λ, ρ) is a pair of degree distribution.
For sufficiently large N and B(a) < µ−1/m2 , the symbol error rate of the
LDPC code ensemble is lower bounded by

1

2N

∑

w=wg

µw Pr(Z(wm2) ≤ 0).
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Simulation Result (1)
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(2,3)-regular LDPC code over GL(4, F2) code length 1260 bit.
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Simulation Result (2)
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Conclusion

Conclusion

For non-binary LDPC codes over GL(m3, F2m4 ) over the 2m1 -MS channels
under BP decoding,

we proposed a method to lower the error floors,

we analyzed the decoding error rates in the error floors.

Hi,j ∈ F2m Hi,j ∈ GL(m3, F2m4 ) Hi,j ∈ GL(m, F2)
codes over GF codes over GL group

Decoding
complexity

low middle high

Performance
on waterfall

low unknown high

Performance
on error floor

same

Future works

Improve the decoding error rates in the waterfall regions.
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