Analysis of Error Floors of Generalized Non-binary LDPC Codes over *q*-ary Memoryless Symmetric Channels

Takayuki Nozaki, Kenta Kasai, Kohichi Sakaniwa

Tokyo Institute of Technology

July 5, 2012

Outline

1 Introduction

- Purposes of Research
- Non-binary LDPC Matrices over General Linear Group
- q-ary Memoryless Symmetric Channel

2 Lowering Decoding Error Rates in Error Floors

- Error Floors and Zigzag Cycles
- A Method to lower Error Floors

3 Analysis of Decoding Error Rates in Error Floors

- Log-Likelihood Ratio
- *L*-Density and Bhattacharyya Functional
- Decoding Error Rate of Zigzag Cycle
- Lower Bound of Error Floor
- Simulation Results

Purposes of Research

Purposes of research

For non-binary low-density parity-check (LDPC) matrices over general linear (GL) groups over the q-ary memoryless symmetric (q-MS) channels under belief propagation (BP) decoding,

we propose a method to lower the error floors,

• we analyze the decoding error rates in the error floors.

Contribution of the research

	MBIOS channel	q-MS channel
LDPC matrices over GF	[NKS2011]	This research
LDPC matrices over GL group	This research	This research

GF : Galois field

MBIOS channel : Memoryless binary-input output-symmetric channel

[NKS2011] T. Nozaki, K. Kasai, and K. Sakaniwa, "Analysis of Error Floors of

Non-binary LDPC Codes over MBIOS Channel," IEICE Trans. Fundamentals,

vol. E94-A, no. 11, pp.2144-2152, Nov. 2011.

Nozaki et al. (Titech)

Analysis of EF for non-binary LDPC code

Non-binary LDPC Codes

GL group $\mathrm{GL}(m_3,\mathbb{F}_{2^{m_4}})$ is the set of $m_3 imes m_3$ invertible matrices over $\mathbb{F}_{2^{m_4}}$.

Non-binary LDPC matrices over general linear group

$$\left\{ (\boldsymbol{x}_1, \boldsymbol{x}_2, \dots, \boldsymbol{x}_N) \in (\mathbb{F}_2^m)^N \mid \\ \sum_{i \in \mathcal{N}_c(j)} H_{j,i} \boldsymbol{x}_i^T = \boldsymbol{0}^T \; \forall j \in \{1, \dots, M\} \right\}$$

Let $\mathcal{N}_{\mathrm{c}}(j)$ be the set of variable nodes connecting to the j-th check node.

	$H_{i,j} \in \mathbb{F}_{2^m}$	$H_{i,j} \in \mathrm{GL}(m_3, \mathbb{F}_{2^{m_4}})$	$H_{i,j} \in \mathrm{GL}(m, \mathbb{F}_2)$
	matrices over GF	matrices over GL group	
Decoding complexity	low	middle	high
Performance on waterfall	low	unknown	high
Performance on error floor	unknown	unknown	unknown
Nozaki et al. (Tite	ech) Analysis of EF	for non-binary LDPC code	July 5, 2012 4 / 2

Channel Model

q-MS channel [HSS2008]

 \mathcal{X} : input alphabet \mathcal{Y} : output alphabet *q*-ary memoryless channel is *symmetric* if there exists $\mathcal{T}: \mathcal{Y} \times \mathcal{X} \to \mathcal{Y}$ s.t.

•
$$\forall x \in \mathcal{X}, \ \mathcal{T}(\cdot, x) : \mathcal{Y} \to \mathcal{Y}$$
 is bijection

- $\forall x \in \mathcal{X}$, Jacobian of $\mathcal{T}(\cdot, x) : \mathcal{Y} \to \mathcal{Y}$ is 1 (if \mathcal{Y} is continuous)
- $\forall x_1, x_2 \in \mathcal{X}, \forall y \in \mathcal{Y}, \quad p(y \mid x_1) = p(\mathcal{T}(y, x_2 x_1) \mid x_2)$

[Lemma 1] All-zero codeword assumption

The decoding error rate of the LDPC code over $GL(m_3, \mathbb{F}_{2^{m_4}})$ through the 2^{m_1} -MS channel under BP decoding is independent of the sending codeword.

[HSS2008] E. Hof, I. Sason, and S. Shamai, "Performance bounds for non-binary linear block codes over memoryless symmetric channels," IEEE trans. on IT, Mar. 2008

Examples of *q*-MS channels

Examples of q-MS channels

memoryless binary input output symmetric (MBIOS) channels

- binary erasure channel (BEC)
- binary symmetric channel (BSC)
- binary additive white Gaussian noise (BAWGN) channel

■ *q*-ary symmetric channel (*q*-SC)

$$p(y \mid x) = \begin{cases} 1 - \epsilon, & \text{if } y = x, \\ \epsilon/(q - 1), & \text{if } y \neq x. \end{cases}$$

Channel Outputs to a Variable Node

We parameterize the number of channel outputs assigned to a variable node.

In the case for m=6

Outline

1 Introduction

- Purposes of Research
- Non-binary LDPC Matrices over General Linear Group
- q-ary Memoryless Symmetric Channel

2 Lowering Decoding Error Rates in Error Floors

- Error Floors and Zigzag Cycles
- A Method to lower Error Floors

3 Analysis of Decoding Error Rates in Error Floors

- Log-Likelihood Ratio
- L-Density and Bhattacharyya Functional
- Decoding Error Rate of Zigzag Cycle
- Lower Bound of Error Floor
- Simulation Results

Error Floors and Zigzag Cycles

Error floors are mainly caused by small weight errors.

[Definition] Zigzag cycle

Zigzag cycles are circuit in the Tanner graph such that all the variable nodes are of degree two.

Property: Zigzag cycles cause small weight errors.

Nozaki et al. (Titech)

Methods to Lower Error Floors

To lower the error floors, we need to optimize the zigzag cycle.

Optimization of zigzag cycles

■ Optimize the structure of Tanner graph
→ (e.g.) Progressive edge growth [HEA2005] removes the zigzag cycles of small weight from Tanner graph.

Optimize the labels in the zigzag cycles

 \rightarrow This research optimizes the labels in the zigzag cycles to lower the decoding error rates in the zigzag cycles.

[HEA2005] X.Y. Hu, E. Eleftherious, and D. Arnold, "Regular and irregular progressive edge-growth Tanner graphs," *IEEE Trans. Inf. Theory*, vol. 51, no. 1, pp. 386–396, Jan. 2005

Optimization of Labels to Lower Error Floors

For zigzag cycle with labels $H_{1,1}, H_{1,2}, H_{2,2}, \ldots, H_{w,w}, H_{w,1}$, define $\chi := H_{1,1}^{-1} H_{1,2} H_{2,2}^{-1} \cdots H_{w,w}^{-1} H_{w,1}$. The order σ of χ is the smallest integer s.t. χ^{σ} is identify matrix.

Label selection to lower the error floors

Optimize labels in the zigzag cycles satisfying $\sigma = 2^{m_3m_4} - 1$ to lower the error floors for non-binary LDPC code over $GL(m_3, \mathbb{F}_{2^{m_4}})$.

Outline of proof

- [Theorem 1] shows the condition for the successful decoding of the zigzag cycles.
- 2 [Corollary 1] gives the zigzag cycles which have the best decoding performance.
- [Lemma 2] gives the relation between condition in [Corollary 1] and order of χ.

Outline of Proof (1)

[Definition] Orbit

Let $\langle \chi \rangle$ be the cyclic subgroup generated by $\chi \in \operatorname{GL}(m_3, \mathbb{F}_{2^{m_4}})$, i.e., $\langle \chi \rangle := \{\chi^j \mid j = 0, 1, \dots \}.$ Define the *orbit* of $x \in \mathbb{F}_{2^{m_4}}^{m_3}$ under $\langle \chi \rangle$ as $\langle \chi \rangle x := \{gx \mid g \in \langle \chi \rangle\}.$

The set of orbits of $x \in \mathbb{F}_{2^{m_4}}^{m_3} \setminus \{0\}$ under $\langle \chi \rangle$ forms *partition* of $\mathbb{F}_{2^{m_4}}^{m_3} \setminus \{0\}$. A *set of class representatives* S_{χ} is a subset of $\mathbb{F}_{2^{m_4}}^{m_3} \setminus \{0\}$ which contains exactly one elements from each orbit.

Outline of Proof (2)

Let $C_i(x)$ be the initial message from *i*-th variable node in the BP decoder for $x \in \mathbb{F}_{2^{m_4}}^{m_3}$.

[Theorem 1] Condition for successful decoding

Consider the zigzag cycle of weight w with $\chi = H_{1,1}^{-1}H_{1,2}\cdots H_{w,w}^{-1}H_{w,1}$. All the symbols in the zigzag cycles are successful decoded *iff*

$$\prod_{t=0}^{\langle \chi \rangle x \mid -1} \prod_{s=1}^{w} C_s(0) > \prod_{t=0}^{|\langle \chi \rangle x \mid -1} \prod_{s=1}^{w} C_s\left(\left(\prod_{j=s}^{w} \iota_j\right) \chi^t x\right) \quad \forall x \in S_{\chi}.$$

No symbols in the zigzag cycles are successful decoded iff

$$\prod_{t=0}^{\langle \chi \rangle x \mid -1} \prod_{s=1}^{w} C_s(0) \le \prod_{t=0}^{|\langle \chi \rangle x \mid -1} \prod_{s=1}^{w} C_s\left(\left(\prod_{j=s}^{w} \iota_j\right) \chi^t x\right) \quad \exists x \in S_{\chi}.$$

Outline of Proof (3)

[Corollary 1] Zigzag cycles having best performance

The zigzag cycles with χ s.t. $|S_\chi|=1$ have the best decoding performance in the zigzag cycles for a fixed weight.

[Lemma 2] Relation between orbit and order

The order of $\chi \in \operatorname{GL}(m_3, \mathbb{F}_{2^{m_4}})$ is $2^{m_3m_4} - 1$ iff $|S_{\chi}| = 1$.

The zigzag cycles with χ of order $2^{m_3m_4}-1$ have the best decoding performance in the zigzag cycles for a fixed weight.

Outline

1 Introduction

- Purposes of Research
- Non-binary LDPC Matrices over General Linear Group
- q-ary Memoryless Symmetric Channel

2 Lowering Decoding Error Rates in Error Floors

- Error Floors and Zigzag Cycles
- A Method to lower Error Floors

3 Analysis of Decoding Error Rates in Error Floors

- Log-Likelihood Ratio
- *L*-Density and Bhattacharyya Functional
- Decoding Error Rate of Zigzag Cycle
- Lower Bound of Error Floor
- Simulation Results

Condition for Decoding Failure

[Definition] Log-likelihood ratio (LLR)

Assume the 2^{m_1} -MS channel. For $\gamma \in \mathcal{X} = \mathbb{F}_2^{m_1}$, the LLR $Z_{v,i}(y_{v,i}, \gamma)$ corresponding to the *i*-th channel

output $y_{v,i}$ in the v-th variable node is defined as

$$Z_{v,i}(y_{v,i},\gamma) = \log \frac{p(y_{v,i} \mid 0)}{p(y_{v,i} \mid \gamma)}.$$

[Corollary 2] Condition for decoding failure for zigzag cycles

We consider the zigzag cycle of weight w with the matrix χ of order $2^{m_3m_4}-1.$

No symbols in the zigzag cycle are successfully decoded iff

$$\sum_{v=1}^{w} \sum_{i=1}^{m_2} \sum_{\gamma \in \mathbb{F}_2^{m_1} \setminus \{0\}} Z_{v,i}(y_{v,i},\gamma) \le 0.$$

L-Density and Bhattacharyya Functional

[Definition] L-density for 2^{m_1} -MS channels

Define the random variable

$$L(Y) := \sum_{\gamma \in \mathbb{F}_2^{m_1} \setminus \{0\}} \log \frac{p(Y \mid 0)}{p(Y \mid \gamma)}.$$

Let a(x) be the density function of L(Y). We refer a(x) as *L*-density.

The 2^{m_1} -MS channels are characterized by *L*-density.

[Definition] Bhattacharyya functional

For a *L*-density a(x), the Bhattacharyya functional $\mathfrak{B}(a)$ is defined as $\mathfrak{B}(a) = \int_{-\infty}^{\infty} a(x) \exp[-x/2] dx.$

Decoding Error Rate of Zigzag Cycle

[Corollary 3] Decoding error rate of zigzag cycle

Let $m = m_1 m_2 = m_3 m_4$.

Let $P_{zc}(w, m_1, m_2, a)$ be the symbol error rate for the zigzag cycle of weight w with χ of order $2^m - 1$ over the 2^{m_1} -MS channel with L-density a(x) under BP decoding. Define $Z^{(k)} = \sum_{i=1}^k Z_i$, where Z_1, Z_2, \ldots, Z_k denote i.i.d. random variable

with *L*-density a(x). Then

$$P_{\mathrm{zc}}(w, m_1, m_2, \mathsf{a}) = \Pr(Z^{(wm_2)} \le 0) \le \mathfrak{B}(\mathsf{a})^{wm_2}$$

Note: For a fixed $m = m_3 m_4$, the decoding error rate of zigzag cycles are independent from m_3 and m_4 .

Lower Bound of Error Floor

Consider the LDPC codes designed by proposed method.

[Theorem 2] Lower bound of error floors for non-binary LDPC codes

Let $w_{\rm g}$ be the minimum weight of the zigzag cycle in the LDPC code ensemble.

Define $\mu := \lambda'(0)\rho'(1)$, where (λ, ρ) is a pair of degree distribution. For sufficiently large N and $\mathfrak{B}(a) < \mu^{-1/m_2}$, the symbol error rate of the LDPC code ensemble is lower bounded by

$$\frac{1}{2N}\sum_{w=w_{\mathrm{g}}}\mu^{w}\operatorname{Pr}(Z^{(wm_{2})}\leq 0).$$

Simulation Result (1)

(2,3)-regular LDPC code over $GL(4, \mathbb{F}_2)$ code length 1260 bit.

Simulation Result (2)

(2,3)-regular LDPC code over \mathbb{F}_{2^4} and $\operatorname{GL}(4,\mathbb{F}_2)$ code length 1260 bit.

Conclusion

Conclusion

For non-binary LDPC codes over ${\rm GL}(m_3,\mathbb{F}_{2^{m_4}})$ over the $2^{m_1}\text{-}{\rm MS}$ channels under BP decoding,

- we proposed a method to lower the error floors,
- we analyzed the decoding error rates in the error floors.

	$H_{i,j} \in \mathbb{F}_{2^m}$	$H_{i,j} \in \mathrm{GL}(m_3, \mathbb{F}_{2^{m_4}})$	$H_{i,j} \in \mathrm{GL}(m, \mathbb{F}_2)$
	codes over GF	codes over GL group	
Decoding complexity	low	middle	high
Performance on waterfall	low	unknown	high
Performance on error floor	same		

Future works

Improve the decoding error rates in the waterfall regions.