Message Passing Algorithm with MAP Decoding on Zigzag Cycles for Non-binary LDPC Codes

Takayuki Nozaki\(^1\), Kenta Kasai\(^2\), Kohichi Sakaniwa\(^2\)

\(^1\)Kanagawa University

\(^2\)Tokyo Institute of Technology

July 12th, 2013
Introduction

We propose a new decoding algorithm for non-binary low-density parity-check (LDPC) codes over binary erasure channel (BEC).

Strength of the proposed algorithm

- In the error floor region, decoding erasure rate of proposed algorithm is lower than that of BP decoder
- Message passing algorithm

Weakness of the proposed algorithm

- Decoding complexity is higher than the BP decoder

Main idea

- Reduce the decoding erasures in the zigzag cycles
- Three phase decoding algorithm
 - [Phase 1] BP decoding
 - [Phase 2] Detection of the zigzag cycles with erasures
 - [Phase 3] MAP decoding on the zigzag cycles
Outline

1. Introduction

2. Non-binary LDPC Codes and Zigzag Cycles

3. Message Passing Algorithm with MAP Decoding on Zigzag Cycles
 - Zigzag Cycle Detection
 - MAP Decoding on Zigzag Cycles
 - Simulation Result

4. Conclusion
Non-binary LDPC Code

A linear code defined by sparse parity check matrix $H \in \mathbb{F}_{2^m}^{M \times N}$

$$C := \{ \mathbf{x} \in \mathbb{F}_{2^m}^N \mid H \mathbf{x}^T = 0^T \}$$

It is known that the optimized irregular non-binary LDPC codes contain variable nodes of degree 2.

\[
\begin{align*}
&v_1 \quad c_1 \\
v_2 \quad c_1 & \quad v_2 \\
v_3 \quad c_1 & \quad v_3 \\
v_4 \quad c_1 & \quad v_4 \\
v_5 \quad c_1 & \quad v_5 \\
v_6 \quad c_1 & \quad v_6 \\
\end{align*}
\]
Decoding erasures with small weight cause error floors.

Definition: Zigzag Cycle

A zigzag cycle \((V_{zc} \cup C_{zc}, E_{zc})\) is a simple cycle such that the degrees of variable nodes in \(V_{zc}\) are two in the Tanner graph. All the check nodes in \(C_{zc}\) connect to the variable nodes \(V_{zc}\) exactly twice.

- The set of the variable nodes in \(V_{zc}\) forms stopping sets.
- Zigzag cycles cause decoding erasures with small weight.

Example: Zigzag Cycle

(Left) A zigzag cycle

(Right) A connected graph which is not zigzag cycle
Outline

1 Introduction

2 Non-binary LDPC Codes and Zigzag Cycles

3 Message Passing Algorithm with MAP Decoding on Zigzag Cycles
 - Zigzag Cycle Detection
 - MAP Decoding on Zigzag Cycles
 - Simulation Result

4 Conclusion
Abstract of Proposed Decoding Algorithm

Key Concept of Decoding Algorithm

The BP decoder can not recover zigzag cycles in which all the bits are erased, but MAP decoder can recover those.

Combine “BP decoder” with “MAP decoding on the zigzag cycles”

- $y_{mN} \in \{0, 1, ?\}^{mN}$: channel outputs.
- $E_i \subseteq F_{2^m}$: BP decoding result for the i-th variable node (VN).
- $s_j := \sum_{i \in \{k||E_k|=1\}} h_{j,i} \hat{x}_i^{BP} \in F_{2^m}$: syndrome of the j-th check node (CN).
- $\mathcal{Z} \in [1, N]$: the set of VNs in zigzag cycles with BP decoding erasures.
- $\hat{x}_i \in F_{2^m} \cup \{?\}$: the decoding result of the i-th VN.
Zigzag Cycle Detection (1:Example)

If the \(i \)-th BP decoding result \(E_i \) is not unique, then the \(i \)-th VN has BP decoding erasure.

(1) The blue VNs are correctly decoded by BP decoder
Zigzag Cycle Detection (2:Algorithm)

[Algorithm 1] Zigzag Cycle Detection

1. (Construction of residual graph)
 Set G as the Tanner graph. For $i \in [1, N]$, if $|E_i| = 1$, i-th VN and adjacent edges are removed from G and $\hat{x}_i = \gamma$ where γ is the unique element of E_i.

2. (Removing CNs of residual degrees more than 2)
 For $j \in [1, M]$, if the j-th CN is of degree more than 2 in G, $\hat{x}_i = ?$ and remove the VNs connecting to the j-th CN and edges adjacent to those VNs from G.

3. (Removing CNs whose residual degrees decrease)
 For $j \in [1, M]$, if the residual degrees of the j-th CN decreases, $\hat{x}_i = ?$ and remove the VNs connecting to the j-th CN and edges adjacent to those VNs from G.

4. (Decision)
 If the residual degrees of all the CNs do not decrease in Step 3, let \mathcal{Z} be the set of variable nodes in G and algorithm stops. Otherwise, go to Step 3.
MAP Decoding on Zigzag Cycles (1:Inverse Matrix)

To simplify the notations, we consider the zigzag cycle of weight 3.

Let s_i be syndrome of the i-th check node.

$\zeta_i := h_{i-1,i} h_{i,i}^{-1}$, $\beta := \prod_{i=1}^{3} \zeta_i$.

Assume that the submatrix corresponding to zigzag cycle is non-singular, i.e., $\beta \neq 1$.

\[
\begin{pmatrix}
 s_1 \\
 s_2 \\
 s_3 \\
\end{pmatrix}
=
\begin{pmatrix}
 h_{1,1} & h_{1,2} & 0 \\
 0 & h_{2,2} & h_{2,3} \\
 h_{3,1} & 0 & h_{3,3} \\
\end{pmatrix}
\begin{pmatrix}
 x_1 \\
 x_2 \\
 x_3 \\
\end{pmatrix}
\]

$\iff \frac{1}{1 + \beta}
\begin{pmatrix}
 h_{1,1}^{-1} & h_{1,1}^{-1} \zeta_2 & h_{1,1}^{-1} \zeta_2 \zeta_3 \\
 h_{2,2}^{-1} \zeta_3 \zeta_1 & h_{2,2}^{-1} & h_{2,2}^{-1} \zeta_3 \\
 h_{3,3}^{-1} \zeta_1 & h_{3,3}^{-1} \zeta_1 \zeta_2 & h_{3,3}^{-1} \\
\end{pmatrix}
\begin{pmatrix}
 s_1 \\
 s_2 \\
 s_3 \\
\end{pmatrix}
=
\begin{pmatrix}
 x_1 \\
 x_2 \\
 x_3 \\
\end{pmatrix}$.
Hence, the MAP decoding results are

\[
\hat{x}_1 = (1 + \beta)^{-1} h_{1,1}^{-1}(s_1 + \zeta_2 s_2 + \zeta_2 \zeta_3 s_3) =: (1 + \beta)^{-1} A_1,
\]

\[
\hat{x}_2 = (1 + \beta)^{-1} h_{2,2}^{-1}(\zeta_3 \zeta_1 s_1 + s_2 + \zeta_3 s_3) =: (1 + \beta)^{-1} A_2,
\]

\[
\hat{x}_3 = (1 + \beta)^{-1} h_{3,3}^{-1}(\zeta_1 s_1 + \zeta_1 \zeta_2 s_2 + s_3) =: (1 + \beta)^{-1} A_3.
\]

Define \(B_i := \beta^{-1} A_i \). \(\beta = A_i / B_i \) \(\beta \neq 1 \iff A_i \neq B_i \).

Then, we get

\[
\hat{x}_i = \frac{A_i}{1 + \beta} = \frac{A_i}{1 + A_i / B_i} = \frac{A_i B_i}{A_i + B_i}.
\]

Hence, we obtain the MAP decoding result if we get \(A_i \) and \(B_i \).

A message passing algorithm is able to calculate \(A_i \) and \(B_i \).
MAP Decoding on Zigzag Cycle (3:Example)

\[A_1 = h_{1,1}^{-1}\left(s_1 + \zeta_2 (s_2 + \zeta_3 s_3) \right) \]

\[= h_{1,1}^{-1}\left(s_1 + h_{1,2} h_{2,2}^{-1} (s_2 + h_{2,3} h_{3,3}^{-1} (s_3 + h_{3,1} 0_0)) \right) \]
$B_1 = h_{3,1}^{-1}\left(s_3 + \zeta_3^{-1}(s_2 + \zeta_2^{-1}s_1)\right)$

$= h_{3,1}^{-1}\left(s_3 + h_{3,3}h_{2,3}^{-1}(s_2 + h_{2,2}h_{1,2}^{-1}(s_1 + h_{1,1}0_0))\right).$
MAP Decoding on Zigzag Cycle (5:Algorithm)

- \(s_j \in \mathbb{F}_{2^m} \) : syndrome of the \(j \)-th check node (CN).
- \(\mathcal{Z} \in [1, N] \) : the set of VNs in zigzag cycles with BP decoding erasures.
- \(\hat{x}_i \in \mathbb{F}_{2^m} \cup \{?\} \) : the decoding result of the \(i \)-th VN.
- \((\psi_{i\rightarrow j}^{(\ell)}, p_{i\rightarrow j}^{(\ell)}) \in \mathbb{F}_{2^m} \times [1, w] \) : the message from the \(i \)-th VN to the \(j \)-th CN at the \(\ell \)-th iteration.
- \((\phi_{j\rightarrow i}^{(\ell)}, q_{j\rightarrow i}^{(\ell)}) \in \mathbb{F}_{2^m} \times [1, w] \) : the message from the \(j \)-th CN to the \(i \)-th VN at the \(\ell \)-th iteration.
- \(\mathcal{N}_V(i) \) : the set of indices of CNs which are neighbors of the \(i \)-th VN.
- \(\mathcal{N}_c(j) \) : the set of indices of VNs which are neighbors of the \(j \)-th CN.
- \(\mathcal{N}_V(\mathcal{Z}) \) : the set of indices of CNs which are neighbors of the VNs in \(\mathcal{Z} \).
Algorithm 2: MAP Decoding on Zigzag Cycle

1. Set $\ell = 0$. For $i \in \mathcal{Z}$ and $j \in \mathcal{N}_v(i)$, the i-th VN sends
 $$ (\psi_{i \rightarrow j}^{(0)}, p_{i \rightarrow j}^{(0)}) = (0, i). $$

2. For $j \in \mathcal{N}_v(\mathcal{Z})$ and $i \in \mathcal{N}_c(j) \cap \mathcal{Z}$, the j-th CN sends
 $$ (\phi_{j \rightarrow i}^{(\ell+1)}, q_{j \rightarrow i}^{(\ell+1)}) = (h_{j,i}^{-1}(s_j + h_{j,i} \psi_{i' \rightarrow j}^{(\ell)}), p_{i' \rightarrow j}^{(\ell)}), $$
 where i' is the unique element of $(\mathcal{N}_c(j) \cap \mathcal{Z}) \setminus \{i\}$.

3. For $i \in \mathcal{Z}$, if $i = q_{j \rightarrow i}^{(\ell+1)} = q_{j' \rightarrow i}^{(\ell+1)}$ where $\{j, j'\} = \mathcal{N}_v(i)$, then $\mathcal{Z} \leftarrow \mathcal{Z} \setminus \{i\}$
 $$ \hat{x}_i = \begin{cases}
 \phi_{j \rightarrow i}^{(\ell+1)} \phi_{j' \rightarrow i}^{(\ell+1)} / (\phi_{j \rightarrow i}^{(\ell+1)} + \phi_{j' \rightarrow i}^{(\ell+1)}), & \text{if } \phi_{j \rightarrow i}^{(\ell+1)} \neq \phi_{j' \rightarrow i}^{(\ell+1)}; \\
 ?, & \text{if } \phi_{j \rightarrow i}^{(\ell+1)} = \phi_{j' \rightarrow i}^{(\ell+1)}.
 \end{cases} $$

4. If $\mathcal{Z} = \emptyset$, the algorithm stops.

5. Set $\ell \leftarrow \ell + 1$. For $i \in \mathcal{Z}$ and $j \in \mathcal{N}_v(i)$, the i-th VN sends
 $$ (\psi_{i \rightarrow j}^{(\ell)}, p_{i \rightarrow j}^{(\ell)}) = (\phi_{j' \rightarrow i}^{(\ell)}, q_{j' \rightarrow i}), $$
 where j' is the unique element of $\mathcal{N}_v(i) \setminus \{j\}$. Go to Step 2.
Decoding Complexity (Worst case)

\mathcal{E} : the number of variable node with decoding erasure

Zigzag cycle detection
(The number of iteration) $\leq \mathcal{E}/2$
(The number of edges conveying messages per iteration) $\leq 2\mathcal{E}$
\Rightarrow Complexity $O(\mathcal{E}^2)$

MAP decoding on zigzag cycle
(The number of iteration) $\leq \mathcal{E}$
(The number of calculations per iteration) $\leq O(\mathcal{E})$
\Rightarrow Complexity $O(\mathcal{E}^2)$
Simulation Result (1)

(2,3)-regular LDPC codes constructed by [NKS12]
\mathbb{F}_{2^4}
Symbol code length 315

Simulation Result (2)

Irregular LDPC codes constructed [NKS12] \(\mathbb{F}_{2^4} \)
Symbol code length 252

\[
\Lambda(x) = 195x^2 + 26x^3 + 29x^4 + 2x^5
\]
\[
P(x) = 36x^4 + 90x^5
\]

Conclusions

- We have proposed a message passing decoding algorithm with MAP decoding on the zigzag cycles.

Remark

- The proposed algorithm is extended to the memoryless binary-input output-symmetric channels (IEICE transactions).