Weight Distribution for Non-binary Cluster LDPC Code Ensemble

Takayuki Nozaki¹, Masaki Maehara², Kenta Kasai², Kohichi Sakaniwa²

¹Kanagawa University

 $^2 {\rm Tokyo}$ Institute of Technology

July 12th, 2013

Introduction (1)

Non-binary cluster LDPC codes [SD2011]

- One of a class of non-binary LDPC code
- A generalization of non-binary LDPC code defined over general linear group
- Good decoding performance in low rate codes

Contribution of this research

For irregular non-binary cluster LDPC code ensemble,

- We derive the symbol and bit weight distributions
- We show the growth rate of symbol and bit weight distributions
- We give a condition that the relative minimum distance linearly grows with the code length

[SD2011] V.Savin and D.Declercq, "Linear growing minimum distance of ultra-sparse non-binary cluster-LDPC codes," ISIT2011, pp.523–527, July-Aug. 2011

Introduction (2)

Weight distribution for non-binary LDPC code ensembles

Gallager	Gallager code ensemble over $\mathbb{Z}/q\mathbb{Z}$	symbol-WD
Kasai et al.	Irregular ensemble over \mathbb{F}_{2^m}	symbol and bit-WD
Andriyanova et al.	Regular ensemble over $\operatorname{GL}(m, \mathbb{F}_2)$	bit-WD
This research	Irregular cluster ensemble	symbol and bit-WD

Related research for minimum distance of non-binary cluster LDPC codes

- [SD2011] shows that there exist (2, *d*_c)-regular expurgated ensemble whose minimum distance linearly grows with the code length
- This research shows a condition that the relative minimum distance linear grows with the code length for random irregular non-binary cluster LDPC code ensemble.

1 Introduction

2 Preliminaries

3 Weight Distribution for Non-binary Cluster LDPC Code Ensemble

4 Growth Rate for Non-binary Cluster LDPC Code Ensemble

- Growth Rate
- Analysis of Small Weight Codeword
- Numerical Examples

Non-binary Cluster LDPC Code

[Definition] Non-binary cluster LDPC code

- Defined by a Tanner graph G
- \blacksquare Each edge in Tanner graphs is labeled by $\mathit{cluster},$ which is $p \times r$ full-rank matrix
- A symbol (*r*-bits) is assigned to each variable node

$$C(\mathsf{G}) := \left\{ (\boldsymbol{x}_1, \dots, \boldsymbol{x}_N) \in (\mathbb{F}_2^r)^N \mid \sum_{i \in \mathcal{N}_c(j)} h_{j,i} \boldsymbol{x}_i^T = \boldsymbol{0}^T \; \forall j \in [1, M] \right\}$$

Irregular Non-binary Cluster LDPC Code Ensemble

[Definition] Irregular non-binary cluster LDPC code ensemble $\mathcal{G}(N,p,r,\lambda,\rho)$

N : the number of variable nodes (symbol code length) p,r : size of cluster

 λ,ρ : degree distribution pair (edge perspective)

• Bit code length n := rN

Degree distribution pair (node perspective) (L, R)

$$L_i := \lambda_i / \left(i \int_0^1 \lambda(x) dx \right), \quad R_j := \rho_j / \left(j \int_0^1 \rho(x) dx \right)$$

• Total number of edges $E := N / \int_0^1 \lambda(x) dx$

Fraction of check nodes κ

$$\kappa := \frac{\#(\text{check nodes})}{\#(\text{variable nodes})} = \frac{\int_0^1 \rho(x) dx}{\int_0^1 \lambda(x) dx}$$

Design rate

$$L - \kappa p/r$$
 6/2

1 Introduction

2 Preliminaries

3 Weight Distribution for Non-binary Cluster LDPC Code Ensemble

4 Growth Rate for Non-binary Cluster LDPC Code Ensemble

- Growth Rate
- Analysis of Small Weight Codeword
- Numerical Examples

Weight of Codeword

[Definition] Symbol and bit weight of a codeword

Symbol weight of a codeword x

$$w(x) := |\{i \in [1, N] \mid x_i \neq 0\}|$$

Bit weight of a codeword x

 $w_{\rm b}(\boldsymbol{x}) := |\{(i,j) \in [1,N] \times [1,r] \mid x_{i,j} \neq 0\}|$

[Definition] Average number of codeword of weight ℓ

For an ensemble $\mathcal{G} = \mathcal{G}(N, p, r, \lambda, \rho)$,

• average number of codeword of symbol weight ℓ

$$A(\ell) = |\mathcal{G}|^{-1} \sum_{\mathbf{G} \in \mathcal{G}} |\{ \boldsymbol{x} \in C(\mathbf{G}) \mid w(\boldsymbol{x}) = \ell \}|$$

lacksquare average number of codeword of bit weight ℓ

 $A_{\mathbf{b}}(\ell) = |\mathcal{G}|^{-1} \sum_{\mathbf{G} \in \mathcal{G}} |\{ \boldsymbol{x} \in C(\mathbf{G}) \mid w_{\mathbf{b}}(\boldsymbol{x}) = \ell \}|$

Symbol Weight Distribution

[Theorem 1] Symbol weight distribution

For the irregular non-binary cluster LDPC code ensemble $\mathcal{G}(N, p, r, \lambda, \rho)$, the average number of codewords of symbol weight ℓ is

$$\begin{aligned} A(\ell) &= \sum_{k=0}^{E} A(\ell, k) \\ &= \sum_{k=0}^{E} \frac{(2^{r} - 1)^{\ell} \operatorname{coef} \left(P(s, t)^{N}, s^{\ell} t^{k} \right) \operatorname{coef} \left(Q(u)^{N}, u^{k} \right)}{\binom{E}{k} (2^{p} - 1)^{k}}, \\ P(s, t) &:= \prod_{i \in \mathcal{L}} \left(1 + st^{i} \right)^{L_{i}}, \quad Q(u) := \prod_{j \in \mathcal{R}} f_{j}(u)^{\kappa R_{j}}, \\ f_{j}(u) &:= 2^{-p} \left[\{ 1 + (2^{p} - 1)u \}^{j} + (2^{p} - 1)(1 - u)^{j} \right], \end{aligned}$$

where $\mathrm{coef}(g(s,t),s^it^j)$ is the coefficient of the term s^it^j of a polynomial g(s,t).

Bit Weight Distribution

[Theorem 2] Bit weight distribution

For the irregular non-binary cluster LDPC code ensemble $\mathcal{G}(N,p,r,\lambda,\rho)$, the average number of codewords of bit weight ℓ is

$$A_{\rm b}(\ell) = \sum_{k=0}^{E} \frac{\operatorname{coef}\left(P_{\rm b}(s,t)^{n}, s^{\ell}t^{k}\right)\operatorname{coef}\left(Q_{\rm b}(u)^{n}, u^{k}\right)}{\binom{E}{k}(2^{p}-1)^{k}},$$

$$P_{\rm b}(s,t) := \prod_{i \in \mathcal{L}} [1 + \{(1+s)^{r}-1\}t^{i}]^{L_{i}/r},$$

$$Q_{\rm b}(u) := \prod_{j \in \mathcal{R}} f_{j}(u)^{\kappa R_{j}/r},$$

$$f_{j}(u) := 2^{-p} [\{1 + (2^{p}-1)u\}^{j} + (2^{p}-1)(1-u)^{j}].$$

1 Introduction

2 Preliminaries

3 Weight Distribution for Non-binary Cluster LDPC Code Ensemble

4 Growth Rate for Non-binary Cluster LDPC Code Ensemble

- Growth Rate
- Analysis of Small Weight Codeword
- Numerical Examples

Growth Rate of Weight Distribution

[Definition] Growth rate

Growth rate of symbol weight distribution

$$\gamma(\omega) := \lim_{N \to \infty} N^{-1} \log_{2^r} A(\omega N) = \lim_{N \to \infty} (rN)^{-1} \log A(\omega N)$$

Growth rate of bit weight distribution

$$\gamma_{\rm b}(\omega_b) := \lim_{n \to \infty} n^{-1} \log A_{\rm b}(\omega_{\rm b} n)$$

Properties

The following approximations hold

$$A(\omega N) \approx 2^{\gamma(\omega)rN}, \quad A_{\rm b}(\omega_{\rm b}n) \approx 2^{\gamma_{\rm b}(\omega_{\rm b})n}.$$

If $\gamma(\omega) < 0$ for $\omega \in (0, \delta^*)$, there are exponentially few codewords of symbol weight ωN .

Growth Rate of Symbol Weight Distribution

[Theorem 3] Growth rate of symbol weight distribution Define $\omega = \ell/N$ and $\epsilon := E/N$. For $\mathcal{G}(N, p, r, \lambda, \rho)$ with sufficiently large N and for $0 < \omega < 1$, the growth rate $\gamma(\omega)$ of symbol weight distribution is given by $\gamma(\omega) = \sup_{\beta>0} \inf_{s>0,t>0,u>0} r^{-1} [\log P(s,t) + \log Q(u) - \epsilon h(\beta/\epsilon) - \beta \log[tu(2^p - 1)] - \omega \log[s/(2^r - 1)]],$

where $h(x) := -x \log x - (1 - x) \log(1 - x)$ for 0 < x < 1.

A point (s, t, u) achieving the infimum is a solution of

$$\omega = \frac{s}{P} \frac{\partial P}{\partial s}, \quad \beta = \frac{t}{P} \frac{\partial P}{\partial t}, \quad \beta = \frac{u}{Q} \frac{\partial Q}{\partial u}$$

The value β giving the supremum needs to satisfy the stationary condition

$$\beta = (2^p - 1)tu(\epsilon - \beta).$$

Growth Rate of Bit Weight Distribution

[Theorem 4] Growth rate of bit weight distribution

Define $\omega_{\rm b} = \ell/n$ and $\epsilon_{\rm b} := E/n$. For $\mathcal{G}(N, p, r, \lambda, \rho)$ with sufficiently large n and for $0 < \omega_{\rm b} < 1$, the growth rate $\gamma_{\rm b}(\omega_{\rm b})$ of the bit weight distribution is given by

$$\gamma_{\rm b}(\omega_{\rm b}) = \sup_{\beta_{\rm b}>0} \inf_{s>0,t>0,u>0} \left[\log P_{\rm b}(s,t) + \log Q_{\rm b}(u) - \epsilon_{\rm b} h(\beta_{\rm b}/\epsilon_{\rm b}) - \beta_{\rm b} \log(tu(2^p-1)) - \omega_{\rm b} \log s \right].$$

A point (s, t, u) achieving the infimum is given in a solution of

$$\omega_{\rm b} = \frac{s}{P_{\rm b}} \frac{\partial P_{\rm b}}{\partial s}, \quad \beta_{\rm b} = \frac{t}{P_{\rm b}} \frac{\partial P_{\rm b}}{\partial t}, \quad \beta_{\rm b} = \frac{u}{Q_{\rm b}} \frac{\partial Q_{\rm b}}{\partial u}.$$

The value $\beta_{
m b}$ giving the supremum needs to satisfy the stationary condition

$$\beta_{\rm b} = (2^p - 1)tu(\epsilon_{\rm b} - \beta_{\rm b}).$$

Derivations of Growth Rates of Weight Distributions

[Lemma 1] Derivation of growth rate of symbol weight distribution The derivation of growth rate $\gamma(\omega)$ is

$$\frac{d\gamma}{d\omega}(\omega) = -\frac{1}{r}\log\frac{s(\omega)}{2^r - 1}.$$

[Lemma 2] Derivation of growth rate of bit weight distribution The derivation of growth rate $\gamma_{\rm b}(\omega_{\rm b})$ is

$$\frac{d\gamma_{\rm b}}{d\omega_{\rm b}}(\omega_{\rm b}) = -\log s(\omega_{\rm b}).$$

1 Introduction

2 Preliminaries

3 Weight Distribution for Non-binary Cluster LDPC Code Ensemble

4 Growth Rate for Non-binary Cluster LDPC Code Ensemble

- Growth Rate
- Analysis of Small Weight Codeword
- Numerical Examples

Growth Rate for Small Weight (1)

Properties of growth rate (Written again) The following approximations hold

$$A(\omega N) \approx 2^{\gamma(\omega)rN}, \quad A_{\rm b}(\omega_{\rm b}n) \approx 2^{\gamma_{\rm b}(\omega_{\rm b})n}.$$

If $\gamma(\omega) < 0$ for $\omega \in (0, \delta^*)$, there are exponentially few codewords of symbol weight ωN .

[Definition] Normalized typical minimum distance

Define

$$\delta^* := \inf\{\omega > 0 \mid \gamma(\omega) \ge 0\}, \quad \delta^*_{\mathrm{b}} := \inf\{\omega_{\mathrm{b}} > 0 \mid \gamma_{\mathrm{b}}(\omega_{\mathrm{b}}) \ge 0\}.$$

Properties

For $\mathcal{G}(N, p, r, \lambda, \rho)$, if the normalized typical minimum distance is strictly positive, then the typical minimum distance linearly grows with code length.

Growth Rate for Small Weight (2)

[Theorem 5] Growth rate for small symbol weight

For $\mathcal{G}(N,p,r,\lambda,\rho)$ with $\lambda_2>0,$ the growth rate $\gamma(\omega)$ for small ω is

$$\gamma(\omega) = -\frac{\omega}{r} \log\left[\frac{2^p - 1}{(2^r - 1)\lambda'(0)\rho'(1)}\right] + o(\omega),$$

where f(x) = o(g(x)) means $\lim_{x \searrow 0} \left| \frac{f(x)}{g(x)} \right| = 0$ and $\lambda'(0)\rho'(1) = \lambda_2 \sum_{j \in \mathcal{R}} (j-1)\rho_j$.

[Theorem 6] Growth rate for small bit weight

For $\mathcal{G}(N, p, r, \lambda, \rho)$ with $\lambda_2 > 0$, the growth rate $\gamma_{\rm b}(\omega_{\rm b})$ for small $\omega_{\rm b}$ is

$$\gamma_{\rm b}(\omega_{\rm b}) = -\omega_{\rm b} \log \left[\left(\frac{2^p - 1}{\lambda'(0)\rho'(1)} + 1 \right)^{1/r} - 1 \right] + o(\omega_{\rm b}).$$

Growth Rate for Small Weight (3)

[Corollary] Condition that typical minimum distance linearly grows with code length

For $\mathcal{G}(N,p,r,\lambda,\rho)$ with sufficiently large N, the normalized typical minimum distances δ^* and $\delta^*_{\rm b}$ are strictly positive if

$$\lambda'(0)\rho'(1) < \frac{2^p - 1}{2^r - 1}.$$

[Remark] Comparison with other non-binary LDPC codes

Case for non-binary LDPC code over Galois field

 $\lambda'(0)\rho'(1) < 1.$

 \blacksquare Case for non-binary LDPC code defined by general linear group $\lambda'(0)\rho'(1)<1.$

Hence, for (2, d_c)-regular non-binary LDPC code, $\delta^* = 0$ and $\delta_b^* = 0$.

Growth Rate for $(2, d_c)$ -Regular LDPC Code Ensemble

$$\lambda'(0)\rho'(1) < \frac{2^p - 1}{2^r - 1}.$$

[Example] For (2,8)-regular LDPC code ensemble with rate 1/2 $\lambda'(0)\rho'(1) = 7, p/r = 2.$ If $(p,r) = (2,1), \frac{2^p - 1}{2^r - 1} = 3.$ Hence, $\delta^* = 0$ and $\delta^*_b = 0$ If $(p,r) = (4,2), \frac{2^p - 1}{2^r - 1} = 5.$ Hence, $\delta^* = 0$ and $\delta^*_b = 0$ If $(p,r) = (6,3), \frac{2^p - 1}{2^r - 1} = 9.$ Hence, $\delta^* > 0$ and $\delta^*_b > 0$

1 Introduction

2 Preliminaries

3 Weight Distribution for Non-binary Cluster LDPC Code Ensemble

4 Growth Rate for Non-binary Cluster LDPC Code Ensemble

- Growth Rate
- Analysis of Small Weight Codeword
- Numerical Examples

Numerical Example (1 : Symbol Weight)

(2,8)-regular non-binary cluster LDPC code ensemble

Numerical Example (2 : Bit Weight)

(2,8)-regular non-binary cluster LDPC code ensemble

Numerical Example (3 : Normalized Typical Minimum Distance)

(2,8)-regular non-binary cluster LDPC code ensemble

Conclusion

Summary

- We derive the symbol and bit weight distributions
- We show the growth rate of symbol and bit weight distributions
- We give a condition that the relative minimum distance linearly grows with the code length

$$\lambda'(0)\rho'(1) < \frac{2^p - 1}{2^r - 1}.$$