Parallel Encoding Algorithm for LDPC Codes Based on Block-Diagonalization

Takayuki Nozaki

Yamaguchi University This study is supported by a research granted from The Murata Science Foundation

> ISIT2015 18th June 2015

Abstract

Purpose of Research: Reduce the encoding time for LDPC codes

Main Idea: Parallel encoding based on block-diagonalization of H_P

$$\begin{pmatrix} H_1^P & O & H_1^I \\ O & H_2^P & H_2^I \end{pmatrix} (\boldsymbol{p_1}, \boldsymbol{p_2}, \boldsymbol{m}) = \boldsymbol{0} \quad \Rightarrow \quad \begin{cases} H_1^P \boldsymbol{p_1} = -H_1^I \boldsymbol{m} \\ H_2^P \boldsymbol{p_2} = -H_2^I \boldsymbol{m} \end{cases}$$

Contributions of Research

- Propose an efficient parallel encoding algorithm for LDPC codes
- Evaluate the number of operations of the proposed algorithm
 - The number of operations of each processor is almost equal
 - lacktriangle The encoding time becomes 1/K compared with conventional one

Background

Low-Density Parity-Check (LDPC) code

Linear code defined by a sparse parity check matrix $H \in \mathbb{F}^{M \times N}$

	Complexity	Parallelization	
Encoder	$O(N + \delta^2)$?	$\delta = O(N), \delta \ll N$
Decoder	O(N)	Possible	

Researches of Encoding Algorithm

	Complexity	Parallelization
Generator matrix	$O(N^2)$	Possible
[Richardson 2001], [Kaji 2006]	$O(N + \delta^2)$?
This study	$O(N + \delta^2)$	Possible

General Framework of Encoding

Encoding algorithm is divided into precoding step and encoding step

Precoding Step

- Input: Parity check matrix H
- Output: Systematic form $(H_P \mid H_I)$

$$PHQ = (H_P \mid H_I)$$
 P , Q are permutation matrices

$$(H_P \mid H_I) \begin{pmatrix} \boldsymbol{p} \\ \boldsymbol{m} \end{pmatrix} = \boldsymbol{0} \quad \Rightarrow \quad H_P \boldsymbol{p} = -H_I \boldsymbol{m}$$

Encoding Step

- Input: Message *m*
- Output: Parity part p

Solve linear equation $H_P \boldsymbol{p} = -H_I \boldsymbol{m}$

Encoding algorithm is regarded as an algorithm finding P,Q such that $H_P \boldsymbol{p} = -H_I \boldsymbol{m}$ is efficiently solved

Outline of Proposed Algorithm

Precoding Step of Proposed Algorithm

 \blacksquare (To realize parallel algorithm,) Transform H into singly bordered block-diagonal (SBBD) matrix [Aykanat 2004]

$$H \Rightarrow H_2^{\text{SBBD}} = \begin{pmatrix} A_1 & O & B_1 \\ O & A_2 & B_2 \end{pmatrix}$$

2 (To efficiently solve the linear equations,) Rearrange row and column of A_i by conventional algorithm (e.g. Approximate triangularization [Richardson 2001])

Outline of the remaining slides

- 1 Approximate triangularization [Richardson 2001]
- 2 Singly bordered block-diagonalization [Aykanat 2004]
- 3 Propose parallel encoding algorithm
 - 1 Precoding step
 - 2 Encoding step
 - 3 Number of operation

[Richardson 2001] (1: Precoding Step)

[Richardson 2001]

Transform H_P into approximate triangular matrix (ATM)

Complexity
$$O(N + \delta^2)$$

$$H \Rightarrow H^{\text{ATM}} = \begin{pmatrix} T & C & H_u^I \\ D & E & H_l^I \end{pmatrix}$$

$$\begin{pmatrix} T & C & H_u^I \\ D & E & H_I^I \end{pmatrix} (\boldsymbol{p}_1, \boldsymbol{p}_2, \boldsymbol{m})^T = \boldsymbol{0}^T$$

[Richardson 2001] (2: Encoding Step)

$$\begin{pmatrix} T & C & H_u^I \\ D & E & H_l^I \end{pmatrix} (\boldsymbol{p_1}, \boldsymbol{p_2}, \boldsymbol{m})^T = \boldsymbol{0}^T$$

- $\mathbf{p}_{2}^{T} = \phi^{-1}(DT^{-1}H_{i}^{I} H_{i}^{I})\boldsymbol{m}^{T}$
- $T_{p_1}^T = -C_{p_2}^T H_{ii}^I m^T$

where $\phi := E - DT^{-1}C \in \mathbb{F}^{\delta \times \delta}$

Number of Operations

Number of multiplication (For non-binary case)

$$\mu = \operatorname{wt}(H_l^I) + \operatorname{wt}(H_u^I) + \operatorname{wt}(C) + \operatorname{wt}(D) + 2\operatorname{wt}(T) + \operatorname{wt}(\phi^{-1})$$

Number of addition

$$\alpha = \mathcal{S}(H_l^I) + \mathcal{S}(H_u^I) + \mathcal{S}(C) + \mathcal{S}(D) + 2\mathcal{S}(T) + \mathcal{S}(\phi^{-1}) + M$$

where S(A) := wt(A) - (# of non-zero rows)

7 / 15

Block-diagonalization (1: Singly bordered BD) Singly bordered block-diagonalization (SBBD) [Aykanat 2004]

$$H \Rightarrow H_2^{\text{SBBD}} = \begin{pmatrix} A_1 & O & B_1 \\ O & A_2 & B_2 \end{pmatrix}$$

(To simplify the notation, we assume the number of diagonal blocks K=2 in this talk)

To transform H into SBBD matrix, hypergraph partition is used

- **11** Show a hypergraph representation of H
- 2 Solve the hypergraph partition problem

SBBD for H (1: Hypergraph representation of a matrix)

Row-net model [Çatalyürek 1999]

```
i-th column \Rightarrow i-th net (or hyperedge) e_i j-th row \Rightarrow j-th vertex u_j
```

Example

SBBD for H (2: Hypergraph partition)

K-way hypergraph partition $\Pi = \{\mathcal{U}_1, \mathcal{U}_2, \dots, \mathcal{U}_k\}$

(1)
$$\emptyset \neq \mathcal{U}_i \subseteq \mathcal{U}$$
, (2) $\mathcal{U}_i \cap \mathcal{U}_j = \emptyset$ (for $i \neq j$), (3) $\bigcup_{i=1}^K \mathcal{U}_i = \mathcal{U}$

Cuts is the nets which connecting to more than one parts Cutset $\mathcal{X}(\Pi)$ is the set of cuts for the partition Π

Example

$$K = 2$$

$$\mathcal{U}_1 = \{u_1, u_4, u_5, u_6\}$$

$$\mathcal{U}_2 = \{u_2, u_3, u_7\}$$

SBBD for H (3: Hypergraph partition problem and Transformation of matrix)

K-way hypergraph partition problem

minimize : $|\mathcal{X}(\Pi)|$

s.t. Balance condition $\max_i |\mathcal{U}_i| < |\mathcal{U}|(1+\epsilon)/K$

There exist some heuristic algorithms (e.g. PaToH [Çatalyürek])

Block-diagonalization of H (K=2)

- (1) U_1
- (2) U_2
- (3) Vertexes only connected to cutset $\mathcal{X}(\Pi)$
- (i) Nets only connecting to \mathcal{U}_1
- (ii) Nets only connecting to \mathcal{U}_2
- (iii) Cutset $\mathcal{X}(\Pi)$

Proposed Algorithm (1: Precoding step)

Proposed Algorithm (2: Encoding Step)

$$\begin{pmatrix} T_1 & C_1 & O & O & H_{1,u}^I \\ D_1 & E_1 & O & O & H_{1,l}^I \\ O & O & T_2 & C_2 & H_{2,u}^I \\ O & O & D_2 & E_2 & H_{2,l}^I \end{pmatrix} (\boldsymbol{p}_{1,1}, \boldsymbol{p}_{1,2}, \boldsymbol{p}_{2,1}, \boldsymbol{p}_{2,2}, \boldsymbol{m})^T = \boldsymbol{0}^T$$

$$egin{aligned} \begin{pmatrix} T_1 & C_1 & H_{1,u}^I \ D_1 & E_1 & H_{1,l}^I \end{pmatrix} (m{p}_{1,1},m{p}_{1,2},m{m})^T = m{0}^T \ \begin{pmatrix} T_2 & C_2 & H_{2,u}^I \ D_2 & E_2 & H_{2,l}^I \end{pmatrix} (m{p}_{2,1},m{p}_{2,2},m{m})^T = m{0}^T \end{aligned}$$

Parity parts p_1, p_2 are parallelly solved in dual processor system

Numerical Example (Computational Complexity)

Name [MacKay]	RU Algorithm	Proposed Algorithm		
	μ/α (δ)	μ_1/α_1 (δ_1) μ_2/α_2 (δ_2)		
PEGReg504×1008	4599/3542 (21)	2369/1802 (23) 2384/1819 (23)		
PEGReg252x504	2283/1739 (16)	1125/839 (13) 1124/843 (13)		
PEGirReg504x1008	5068/4058 (1)	2587/2079 (2) 2599/2093 (1)		
PEGirReg252x504	2560/2054 (1)	1284/1028 (2) 1289/1034 (1)		
32000.2240.3.105	102659/98159 (7)	50366/48136 (10) 52180/49871 (10)		
16383.2130.3.103	55472/51164 (16)	27453/25298 (15) 28055/25848 (19)		
4095.737.3.101	14418/12915 (10)	7192/6428 (9) 7174/6412 (9)		
10000.10000.3.631	144200/123378 (337)	87501/76950 (302) 96271/85278 (325)		
8000.4000.3.483	45006/36709 (141)	23913/19638 (117) 25204/20868 (127)		
4000.2000.3.243	20240/16075 (74)	10417/8279 (64) 10475/8298 (61)		
504.504.3.504	4572/3517 (19)	2262/1721 (14) 2273/1729 (16)		

 μ_i : The number of multiplication of *i*-th processor

 α_i : The number of addition of *i*-th processor

- The number of operations of each processor is almost equal
- The encoding time becomes 1/K compared with conventional one

Conclusion

- We have proposed a *parallel* encoding algorithm for LDPC codes
 - \blacksquare Main Idea: Block-diagonalization of parity part H_P
- We have evaluated the number of operations of the proposed algorithm
 - The number of operations of each processor is almost equal
 - \blacksquare The encoding time becomes 1/K compared with conventional one