Cutsize Distributions of Balanced Hypergraph Bipartitions for Random Hypergraphs

Takayuki Nozaki
Yamaguchi University

ISIT2016
2016/7/15

Outline

Previous Work (ISIT2015)

We presented a parallel encoding algorithm for LDPC codes

- The processing time of encoding depends on parallel degree K

■ Maximum parallel degree $K_{\max }$ depends on parity check matrix \mathbf{H}

Aim of Research

Analyze the processing time of this encoding algorithm \Rightarrow Analyze the parallel degree $K_{\max }$ of this encoding algorithm

Main result of this work (1)

The parallel degree $K_{\text {max }}$ depends on the minimum cutsize in balanced K-way partition for hypergraph representation of \mathbf{H}

However, balanced hypergraph partitioning problem is NP-hard...

Outline (2)

Solution: We take coding theoretic approach
(Similar technique to derive minimum distance for the LDPC ensemble)
1 considering a random hypergraph ensemble
2 deriving the ensemble average of cutsize distribution (balanced partitions with a given cutsize)
3 analyzing the growth rate for the cutsize distribution
4 clarifying the typical minimum cutsize for the hypergraph ensemble

Main result of this work (2)

Deriving the typical minimum cutsize of balanced bipartitions ($K=2$) for random hypergraph ensemble defined from regular LDPC ensemble

Related works

- Analysis of random graphs by using coding theoritic approaches [Fujii-Wadayama2012], [Yano-Wadayama2012], [Fujii-Wadayama2013]
■ Analysis of cutsize in random graph bisection [Dembo et al.2015]

Preliminaries (1: Hypergraph Representation of code)

Hypergraph $\mathcal{H}=(\mathcal{U}, \mathcal{E})$
■ $\mathcal{U}:=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$: Set of vertices
■ $\mathcal{E}:=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}:$ Set of nets (hyperedges)
Each net connects to at least 1 vertices.

Hypergraph representation of LDPC code

i-th column $\Rightarrow i$-th net $e_{i} \quad j$-th row $\Rightarrow j$-th vertex u_{j}
If $h_{i, j}=1, j$-th net connects to i-th vertex

$$
\left(\begin{array}{llllllllllll}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

Preliminaries (2: Balanced Hypergraph Partitioning)

K-way partition $\Pi_{K}=\left\{\mathcal{U}_{1}, \mathcal{U}_{2}, \ldots, \mathcal{U}_{k}\right\}$

(1) $\emptyset \neq \mathcal{U}_{i} \subseteq \mathcal{U}$,
(2) $\mathcal{U}_{i} \cap \mathcal{U}_{j}=\emptyset($ for $i \neq j)$,
(3) $\bigcup_{i=1}^{K} \mathcal{U}_{i}=\mathcal{U}$

A K-way partition is ϵ-balanced if

$$
\max _{i=1,2, \ldots, K}\left|\mathcal{U}_{i}\right| \leq \frac{|\mathcal{U}|}{K}(1+\epsilon)
$$

(Note) If $\epsilon=0$, then all the parts are same size

■ Cut set $\mathcal{X}\left(\Pi_{K}\right)$ is the set of vertices connecting to at least 2 parts for a partition Π_{K}
■ Cutsize is the number of elements in $\mathcal{X}\left(\Pi_{K}\right)$

Preliminaries (3: Example of Hypergraph Partitioning)

$$
\begin{aligned}
& K=2 \\
& \mathcal{U}_{1}=\left\{u_{1}, u_{4}, u_{5}, u_{6}\right\} \\
& \mathcal{U}_{2}=\left\{u_{2}, u_{3}, u_{7}\right\} \\
& \text { Cut set } \\
& \mathcal{X}\left(\Pi_{2}\right)=\left\{e_{5}, e_{6}, e_{10}, e_{11}, e_{12}\right\} \\
& \text { Cutsize }:\left|\mathcal{X}\left(\Pi_{2}\right)\right|=5
\end{aligned}
$$

Condition for Parallel Encodable (1)

(Definition) K parallel encodable by block-diagonalization

For a given H, an LDPC code is K parallel encodable if there exists a pair of permutation matrices \mathbf{P}, \mathbf{Q} such that

$$
\mathbf{P H Q}=\left(\begin{array}{ll}
\mathbf{H}_{P} & \mathbf{H}_{I}
\end{array}\right)=\left(\begin{array}{cccc}
\mathbf{H}_{P, 1} & & \mathbf{O} & \mathbf{H}_{I, 1} \\
& \ddots & & \vdots \\
\mathbf{O} & & \mathbf{H}_{P, K} & \mathbf{H}_{I, K}
\end{array}\right),
$$

and $\mathbf{H}_{P, i}$ is a non-singular $m_{i} \times m_{i}$ matrix for $i=1,2, \ldots, K$, where m_{i} is almost equal size $\left(\sum_{i} m_{i}=m\right.$ and $\left.\max _{i} m_{i} \leq(1+\epsilon) m / K\right)$

If \mathbf{H} is K-parallel encodable, the parity part of codeword $\boldsymbol{p}=\left(\boldsymbol{p}_{1}, \boldsymbol{p}_{2}, \ldots, \boldsymbol{p}_{K}\right)$ is parallelly solved from

$$
\mathbf{H}_{P, 1} \boldsymbol{p}_{1}^{T}=-\mathbf{H}_{I, 1} \boldsymbol{i}^{T}, \quad \cdots \quad \mathbf{H}_{P, K} \boldsymbol{p}_{K}^{T}=-\mathbf{H}_{I, K} \boldsymbol{i}^{T}
$$

(i : information part of codeword)

Condition for Parallel Encodable (2)

[Proposition 1] Necessary condition of K parallel encodable

If an LDPC code defined by \mathbf{H} is K parallel encodable by block-diagonalization, the following condition holds:

$$
n-m \geq \min _{\Pi_{K}^{(\epsilon)}}\left|\mathcal{X}\left(\Pi_{K}^{(\epsilon)}\right)\right|
$$

- There exists the maximum parallel degree

$$
K_{\max }:=\max \left\{K\left|n-m \geq \min _{\Pi_{K}^{(\epsilon)}}\right| \mathcal{X}\left(\Pi_{K}^{(\epsilon)}\right) \mid\right\}
$$

■ Hence, processing time of encoding algorithm depends on $\min _{\Pi_{K}^{(\epsilon)}}\left|\mathcal{X}\left(\Pi_{K}^{(\epsilon)}\right)\right|$

- However, It is difficult to calculate $\min _{\Pi_{K}^{(\epsilon)}}\left|\mathcal{X}\left(\Pi_{K}^{(\epsilon)}\right)\right|$ (since balanced hypergraph partition problem is NP-hard)

Cutsize distribution (1: Hypergraph ensemble)

Hypergraph ensemble derived from $\mathrm{E}(n, \gamma, \delta)$
1 Define regular LDPC ensemble $\mathrm{E}(n, \gamma, \delta)$

- n : codelength
- γ : degree of variable node
- δ : degree of check node

2 Convert Tanner graph to Hypergraph

- variable node \rightarrow net
- check node \rightarrow vertex

Cutsize distribution (2: Definition)

(Definition) Cutsize distribution

- $A_{\mathcal{H}}\left(s, m_{1}\right)$: the number of bipartitions s.t. $\left|\mathcal{X}\left(\Pi_{2}\right)\right|=s,\left|\mathcal{U}_{1}\right|=m_{1}$ and $\left|\mathcal{U}_{2}\right|=m_{2}=m-m_{1}$ for a hypergraph \mathcal{H}
■ $A\left(s, m_{1}\right)$: ensemble average of $A_{\mathcal{H}}\left(s, m_{1}\right)$

$$
A\left(s, m_{1}\right):=\mathbb{E}_{\mathcal{H} \in \mathrm{E}(n, \gamma, \delta)}\left[A_{\mathcal{H}}\left(s, m_{1}\right)\right]=\frac{1}{\xi!} \sum_{\mathcal{H} \in \mathrm{E}(n, \gamma, \delta)} A_{\mathcal{H}}\left(s, m_{1}\right)
$$

■ $B_{\mathcal{H}}(s, \epsilon)$: the number of ϵ-balanced bipartitions with cutsize s for a hypergraph \mathcal{H}
■ $B(s, \epsilon)$: ensemble average of $B_{\mathcal{H}}(s, \epsilon)$

$$
B(s, \epsilon):=\mathbb{E}_{\mathcal{H} \in \mathrm{E}(n, \gamma, \delta)}\left[B_{\mathcal{H}}(s, \epsilon)\right]=\sum_{m_{1} \in M_{\epsilon}} A\left(s, m_{1}\right),
$$

where $M_{\epsilon}:=\llbracket m(1-\epsilon) / 2, m(1+\epsilon) / 2 \rrbracket$.

Cutsize distribution (3: Theorem)

(Theorem 1) Cutsize distribution

For an ensemble $\mathrm{E}(n, \gamma, \delta)$, the cutsize distribution $A\left(s, m_{1}\right)$ is given as follows:

$$
\begin{aligned}
& A\left(s, m_{1}\right)=\frac{\binom{m}{m_{1}}\binom{n}{s}}{\binom{\delta m}{\delta m_{1}}} \operatorname{Coef}\left(f(u)^{n}, u^{\delta m_{1}}\right) \\
& \quad \times \mathbb{I}\left[s \leq \delta m_{1}\right] \mathbb{I}\left[s \leq \delta\left(m-m_{1}\right)\right] \\
& f(u):=p(u)^{s / n} q(u)^{1-s / n}, \\
& p(u):=(1+u)^{\gamma}-1-u^{\gamma}, \quad q(u):=1+u^{\gamma}
\end{aligned}
$$

where $\operatorname{Coef}\left(f(x), x^{i}\right)$ is the coefficient of x^{i} in the polynomial $f(x)$

Typical Minimum Cutsize (1: Definitions)

(Definition) Growth rate

Define the growth rate $g\left(\sigma, \mu_{1}\right)$ and $h(\sigma, \epsilon)$ for the cutsize distributions $A\left(\sigma n, \mu_{1} m\right)$ and $B(\sigma n, \epsilon)$ as

$$
\begin{aligned}
& g\left(\sigma, \mu_{1}\right)=\lim _{n \rightarrow \infty} \frac{1}{n} \log A\left(\sigma n, \mu_{1} m\right), \\
& h(\sigma, \epsilon)=\lim _{n \rightarrow \infty} \frac{1}{n} \log B(\sigma n, \epsilon),
\end{aligned}
$$

Remark

If $h(\sigma, \epsilon)<0$, then $B(\sigma n, \epsilon)$ is exponentially decreasing If $h(\sigma, \epsilon)>0$, then $B(\sigma n, \epsilon)$ is exponentially increasing

Typical Minimum Cutsize (2: Definition)

(Definition) Typical minimum cutsize
Define

$$
\begin{aligned}
& \alpha^{*}\left(\mu_{1}\right):=\inf \left\{\sigma>0 \mid g\left(\sigma, \mu_{1}\right)>0\right\}, \\
& \beta^{*}(\epsilon):=\inf \{\sigma>0 \mid h(\sigma, \epsilon)>0\} .
\end{aligned}
$$

We refer the value $\alpha^{*}\left(\mu_{1}\right)$ and $\beta^{*}(\epsilon)$ as the relative typical minimum cutsizes for $\mathrm{E}(n, \gamma, \delta)$.
[Proposition2] Necessary condition of 2 parallel encodable If a code $\mathbf{H} \in \mathrm{E}(n, \gamma, \delta)$ is 2 parallel encodable by the block-diagonalization with high probability, the following condition holds:

$$
1-\frac{\gamma}{\delta} \geq \beta^{*}(\epsilon) .
$$

Typical Minimum Cutsize (3: Growth rate)

[Theorem 2] Growth rate

$$
\begin{aligned}
g\left(\sigma, \mu_{1}\right)= & H_{2}(\sigma)-\gamma \frac{\delta-1}{\delta} H_{2}\left(\mu_{1}\right) \\
& +\inf _{u>0}\left\{\sigma \log p(u)+(1-\sigma) \log q(u)-\mu_{1} \gamma \log u\right\} .
\end{aligned}
$$

A point u achieving the infimum satisfies

$$
\sigma u p^{\prime}(u) q(u)+(1-\sigma) u p(u) q^{\prime}(u)=\mu_{1} \gamma p(u) q(u),
$$

where $p^{\prime}(u):=\frac{d p}{d u}$.

$$
h(\sigma, \epsilon)=\max _{\mu_{1} \in M_{\epsilon}} g\left(\sigma, \mu_{1}\right) .
$$

Typical Minimum Cutsize (3: Property of growth rate)

[Proposition 3] Existence of typical minimum cutsize
■ For a fixed μ_{1}, there exist σ_{0} such that $g\left(\sigma_{0}, \mu_{1}\right)=0$
■ For a fixed ϵ, there exist σ_{0} such that $h\left(\sigma_{0}, \epsilon\right)=0$
[Lemma 1] Closed form lower bound

$$
\begin{gathered}
h(\sigma, \epsilon)>h(\sigma, 0)=g(\sigma, 1 / 2) . \\
g(\sigma, 1 / 2)=H_{2}(\sigma)+\sigma \log \left(2^{\gamma-1}-1\right)-\gamma \frac{\delta-1}{\delta}+1 .
\end{gathered}
$$

Typical Minimum Cutsize (4: Numerical Example)

Growth rate $h(\sigma, 0)$ for hypergraph ensemble derived from $(3, \delta)$-regular LDPC ensemble.

Condition for Parallel Encodable

(Recall) Necessary condition of 2 parallel encodable
If a code $\mathbf{H} \in \mathrm{E}(n, \gamma, \delta)$ is $K=2$ parallel encodable by the block-diagonalization with high probability, the following condition holds:

$$
\begin{equation*}
1-\frac{\gamma}{\delta} \geq \beta^{*}(\epsilon) . \tag{1}
\end{equation*}
$$

Table: The left and right hand sides of (1) for $\gamma=3$

δ	4	5	6	7	8	9
$1-\gamma / \delta$	0.2500	0.4000	0.5000	0.5714	0.6250	0.6667
$\beta^{*}(0)$	0.2636	0.3157	0.3545	0.3849	0.4094	0.4297

The ensemble $\mathrm{E}(n, 3, \delta)$ for $\delta \geq 5$ satisfies the necessary condition of parallel encodable.

Conclusion and Future Works

Conclusion

■ We give a necessary condition for K parallel encodable

- We derive the cutsize distribution for hypergraph ensemble

■ We give the growth rate of hypergraph ensemble

- We give the typical minimum cutsize for hypergraph ensemble

Future works

- Consider $K \geq 3$
- Irregular LDPC ensemble case

