Cutsize Distributions of Balanced Hypergraph Bipartitions for Random Hypergraphs

Takayuki Nozaki

Yamaguchi University

ISIT2016 2016/7/15

Outline

Previous Work (ISIT2015)

We presented a *parallel* encoding algorithm for LDPC codes

- $\hfill\blacksquare$ The processing time of encoding depends on parallel degree K
- Maximum parallel degree K_{\max} depends on parity check matrix H

Aim of Research

Analyze the processing time of this encoding algorithm \Rightarrow Analyze the parallel degree K_{\max} of this encoding algorithm

Main result of this work (1)

The parallel degree K_{max} depends on the minimum cutsize in balanced K-way partition for hypergraph representation of H

However, balanced hypergraph partitioning problem is NP-hard...

Outline (2)

Solution: We take *coding theoretic approach*

(Similar technique to derive minimum distance for the LDPC ensemble)

- 1 considering a random hypergraph ensemble
- 2 deriving the *ensemble average* of cutsize distribution (balanced partitions with a given cutsize)
- 3 analyzing the growth rate for the cutsize distribution
- 4 clarifying the typical minimum cutsize for the hypergraph ensemble

Main result of this work (2)

Deriving the typical minimum cutsize of balanced bipartitions (K = 2) for random hypergraph ensemble defined from regular LDPC ensemble

Related works

- Analysis of random graphs by using coding theoritic approaches [Fujii-Wadayama2012], [Yano-Wadayama2012], [Fujii-Wadayama2013]
- Analysis of cutsize in random graph bisection [Dembo et al.2015]

Preliminaries (1: Hypergraph Representation of code)

Hypergraph $\mathcal{H} = (\mathcal{U}, \mathcal{E})$

- $\mathcal{U} := \{u_1, u_2, \dots, u_m\}$: Set of vertices
- $\mathcal{E} := \{e_1, e_2, \dots, e_n\}$: Set of nets (hyperedges)

Each net connects to at least 1 vertices.

Preliminaries (2: Balanced Hypergraph Partitioning)

$$\begin{array}{l} K \text{-way partition } \Pi_K = \{ \mathcal{U}_1, \mathcal{U}_2, \dots, \mathcal{U}_k \} \\ (1) \ \emptyset \neq \mathcal{U}_i \subseteq \mathcal{U}, \quad (2) \ \mathcal{U}_i \cap \mathcal{U}_j = \emptyset \text{ (for } i \neq j \text{)}, \quad (3) \ \bigcup_{i=1}^K \mathcal{U}_i = \mathcal{U} \end{array}$$

A K-way partition is ϵ -balanced if

$$\max_{i=1,2,\dots,K} |\mathcal{U}_i| \le \frac{|\mathcal{U}|}{K} (1+\epsilon)$$

(Note) If $\epsilon = 0$, then all the parts are same size

- Cut set $\mathcal{X}(\Pi_K)$ is the set of vertices connecting to at least 2 parts for a partition Π_K
- Cutsize is the number of elements in $\mathcal{X}(\Pi_K)$

Preliminaries (3: Example of Hypergraph Partitioning)

$$K = 2$$

$$\mathcal{U}_1 = \{u_1, u_4, u_5, u_6\}$$

$$\mathcal{U}_2 = \{u_2, u_3, u_7\}$$

Cut set

$$\mathcal{X}(\Pi_2) = \{e_5, e_6, e_{10}, e_{11}, e_{12}\}$$

Cutsize : $|\mathcal{X}(\Pi_2)| = 5$

Condition for Parallel Encodable (1)

(Definition) K parallel encodable by block-diagonalization

For a given H, an LDPC code is K parallel encodable if there exists a pair of permutation matrices P, Q such that

$$\mathbf{PHQ} = \begin{pmatrix} \mathbf{H}_P & \mathbf{H}_I \end{pmatrix} = \begin{pmatrix} \mathbf{H}_{P,1} & \mathbf{O} & \mathbf{H}_{I,1} \\ & \ddots & & \vdots \\ \mathbf{O} & & \mathbf{H}_{P,K} & \mathbf{H}_{I,K} \end{pmatrix}$$

and $\mathbf{H}_{P,i}$ is a non-singular $m_i \times m_i$ matrix for i = 1, 2, ..., K, where m_i is almost equal size $(\sum_i m_i = m \text{ and } \max_i m_i \leq (1 + \epsilon)m/K)$

If H is K-parallel encodable, the parity part of codeword $p = (p_1, p_2, \dots, p_K)$ is parallelly solved from

$$\mathbf{H}_{P,1}\boldsymbol{p}_1^T = -\mathbf{H}_{I,1}\boldsymbol{i}^T, \qquad \cdots \qquad \mathbf{H}_{P,K}\boldsymbol{p}_K^T = -\mathbf{H}_{I,K}\boldsymbol{i}^T$$

(i: information part of codeword)

Condition for Parallel Encodable (2)

[Proposition 1] Necessary condition of K parallel encodable

If an LDPC code defined by \mathbf{H} is K parallel encodable by block-diagonalization, the following condition holds:

$$n-m \ge \min_{\Pi_K^{(\epsilon)}} |\mathcal{X}(\Pi_K^{(\epsilon)})|.$$

There exists the maximum parallel degree

$$K_{\max} := \max\left\{K \mid n - m \ge \min_{\Pi_K^{(\epsilon)}} |\mathcal{X}(\Pi_K^{(\epsilon)})|\right\}$$

Hence, processing time of encoding algorithm depends on $\min_{\Pi_{K}^{(\epsilon)}} |\mathcal{X}(\Pi_{K}^{(\epsilon)})|$

• However, It is difficult to calculate $\min_{\Pi_{K}^{(\epsilon)}} |\mathcal{X}(\Pi_{K}^{(\epsilon)})|$ (since balanced hypergraph partition problem is NP-hard)

Cutsize distribution (1: Hypergraph ensemble)

Hypergraph ensemble derived from $\mathrm{E}(n,\gamma,\delta)$

1 Define regular LDPC ensemble $\mathrm{E}(n,\gamma,\delta)$

- \blacksquare *n*: codelength
- γ : degree of variable node
- δ : degree of check node
- 2 Convert Tanner graph to Hypergraph
 - $\blacksquare \text{ variable node} \to \text{net}$
 - \blacksquare check node \rightarrow vertex

Cutsize distribution (2: Definition)

(Definition) Cutsize distribution

- $A_{\mathcal{H}}(s, m_1)$: the number of bipartitions s.t. $|\mathcal{X}(\Pi_2)| = s$, $|\mathcal{U}_1| = m_1$ and $|\mathcal{U}_2| = m_2 = m - m_1$ for a hypergraph \mathcal{H}
- $A(s, m_1)$: ensemble average of $A_{\mathcal{H}}(s, m_1)$

$$A(s,m_1) := \mathbb{E}_{\mathcal{H} \in \mathcal{E}(n,\gamma,\delta)}[A_{\mathcal{H}}(s,m_1)] = \frac{1}{\xi!} \sum_{\mathcal{H} \in \mathcal{E}(n,\gamma,\delta)} A_{\mathcal{H}}(s,m_1).$$

- $B_{\mathcal{H}}(s,\epsilon)$: the number of ϵ -balanced bipartitions with cutsize s for a hypergraph \mathcal{H}
- $\blacksquare \; B(s,\epsilon)$: ensemble average of $B_{\mathcal{H}}(s,\epsilon)$

$$B(s,\epsilon) := \mathbb{E}_{\mathcal{H} \in \mathcal{E}(n,\gamma,\delta)}[B_{\mathcal{H}}(s,\epsilon)] = \sum_{m_1 \in M_{\epsilon}} A(s,m_1),$$

where $M_{\epsilon} := \llbracket m(1-\epsilon)/2, m(1+\epsilon)/2 \rrbracket$.

Cutsize distribution (3: Theorem)

(Theorem 1) Cutsize distribution

For an ensemble ${\rm E}(n,\gamma,\delta),$ the cutsize distribution $A(s,m_1)$ is given as follows:

$$A(s,m_1) = \frac{\binom{m}{m_1}\binom{n}{s}}{\binom{\delta m}{\delta m_1}} \operatorname{Coef}(f(u)^n, u^{\delta m_1})$$
$$\times \mathbb{I}[s \le \delta m_1] \mathbb{I}[s \le \delta(m-m_1)],$$
$$f(u) := p(u)^{s/n} q(u)^{1-s/n},$$
$$p(u) := (1+u)^{\gamma} - 1 - u^{\gamma}, \quad q(u) := 1 + u^{\gamma}.$$

where $\operatorname{Coef}(f(x), x^i)$ is the coefficient of x^i in the polynomial f(x)

Typical Minimum Cutsize (1: Definitions)

(Definition) Growth rate

Define the growth rate $g(\sigma,\mu_1)$ and $h(\sigma,\epsilon)$ for the cutsize distributions $A(\sigma n,\mu_1m)$ and $B(\sigma n,\epsilon)$ as

$$g(\sigma, \mu_1) = \lim_{n \to \infty} \frac{1}{n} \log A(\sigma n, \mu_1 m),$$
$$h(\sigma, \epsilon) = \lim_{n \to \infty} \frac{1}{n} \log B(\sigma n, \epsilon),$$

Remark

If $h(\sigma,\epsilon) < 0$, then $B(\sigma n,\epsilon)$ is exponentially decreasing If $h(\sigma,\epsilon) > 0$, then $B(\sigma n,\epsilon)$ is exponentially increasing

Typical Minimum Cutsize (2: Definition)

(Definition) Typical minimum cutsize

Define

$$\begin{aligned} &\alpha^*(\mu_1) := \inf\{\sigma > 0 \mid g(\sigma, \mu_1) > 0\}, \\ &\beta^*(\epsilon) := \inf\{\sigma > 0 \mid h(\sigma, \epsilon) > 0\}. \end{aligned}$$

We refer the value $\alpha^*(\mu_1)$ and $\beta^*(\epsilon)$ as the *relative typical minimum cutsizes* for $E(n, \gamma, \delta)$.

[Proposition2] Necessary condition of 2 parallel encodable

If a code $\mathbf{H} \in \mathrm{E}(n,\gamma,\delta)$ is 2 parallel encodable by the block-diagonalization with high probability, the following condition holds:

$$1 - \frac{\gamma}{\delta} \ge \beta^*(\epsilon).$$

Typical Minimum Cutsize (3: Growth rate)

[Theorem 2] Growth rate

$$g(\sigma, \mu_1) = H_2(\sigma) - \gamma \frac{\delta - 1}{\delta} H_2(\mu_1) + \inf_{u > 0} \{\sigma \log p(u) + (1 - \sigma) \log q(u) - \mu_1 \gamma \log u\}.$$

A point u achieving the infimum satisfies

$$\sigma u p'(u)q(u) + (1-\sigma)up(u)q'(u) = \mu_1 \gamma p(u)q(u),$$

where $p'(u) := \frac{dp}{du}$.

$$h(\sigma, \epsilon) = \max_{\mu_1 \in \bar{M}_{\epsilon}} g(\sigma, \mu_1).$$

Typical Minimum Cutsize (3: Property of growth rate)

[Proposition 3] Existence of typical minimum cutsize

- For a fixed μ_1 , there exist σ_0 such that $g(\sigma_0, \mu_1) = 0$
- For a fixed ϵ , there exist σ_0 such that $h(\sigma_0,\epsilon)=0$

[Lemma 1] Closed form lower bound

$$h(\sigma,\epsilon)>h(\sigma,0)=g(\sigma,1/2).$$

$$g(\sigma, 1/2) = H_2(\sigma) + \sigma \log(2^{\gamma-1} - 1) - \gamma \frac{\delta - 1}{\delta} + 1$$

Typical Minimum Cutsize (4: Numerical Example)

Growth rate $h(\sigma,0)$ for hypergraph ensemble derived from $(3,\delta)\text{-regular}$ LDPC ensemble.

Condition for Parallel Encodable

(Recall) Necessary condition of 2 parallel encodable

If a code $\mathbf{H} \in \mathrm{E}(n, \gamma, \delta)$ is K = 2 parallel encodable by the block-diagonalization with high probability, the following condition holds:

$$1 - \frac{\gamma}{\delta} \ge \beta^*(\epsilon). \tag{1}$$

Table: The left and right hand sides of (1) for $\gamma = 3$

δ	4	5	6	7	8	9
$1 - \gamma/\delta$	0.2500	0.4000	0.5000	0.5714	0.6250	0.6667
$\beta^*(0)$	0.2636	0.3157	0.3545	0.3849	0.4094	0.4297

The ensemble $E(n,3,\delta)$ for $\delta \ge 5$ satisfies the necessary condition of parallel encodable.

Conclusion and Future Works

Conclusion

- \blacksquare We give a necessary condition for K parallel encodable
- We derive the cutsize distribution for hypergraph ensemble
- We give the growth rate of hypergraph ensemble
- We give the typical minimum cutsize for hypergraph ensemble

Future works

- Consider $K \ge 3$
- Irregular LDPC ensemble case