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Background (1)

Wireless sensor networks (WSNs) are represented by graphs
There are possibilities that nodes are breakdown (or flat batteries)

The network is breakdown if survivor graph is separated
Survivor graph is a subgraph constructed from the remaining nodes

We analyze the network breakdown probability for WSNs with unreliable
nodes

network is breakdown network is not breakdown



Background (2)

Networks with unreliable edges

Moore and Shannon [2] considered network reliability problem

Provan and Ball [3] and Vailant [4] showed that network reliability
problem is #P-complete

Karger [5] presented a randomized polynomial time approximation
algorithm for the all terminal network reliability problems

Networks with unreliable nodes

There are no works, as far as the authors know.

Outline

1 Models

1 Random graph model
2 Node fault model

2 Main result

1 Main theorem (upper bound)
2 Computer simulations
3 Proof



Graph and Bipartite Graph

Any graph can be converted into a bipartite graph

Graph G Bipartite Graph Gb



Graph Ensemble and Node fault model

Define graph ensemble in a similar way to LDPC code ensemble

Graph Ensemble

T (n, λ, 2) : (λ, 2)-regular bipartite graph ensemble
G(n, λ) : counterpart of T (n, λ, 2) (λ-regular random graph ensemble)

Node fault model

Each node is independently broken w.p. ϵ.
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Main Theorem

Theorem 1

Pλ,n(ϵ) : ensemble average of network breakdown probability
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Computer experiments (1)

λ = 5, n = 100, 1000

Upper bound is tight for small ϵ



Computer experiments (2)

n = 100

Network breakdown probability appears an exponential function of λ



Proof (1: Ensemble average)

G \ Z : Survivor graph
E[·] : average over ensemble G(n, λ)
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Qj,λ,n: average of network breakdown probability when fixed j nodes are
broken

Qj,λ,n := E[I[G \ Z : separated]], (|Z| = j)
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Proof (2: Bipartite configuration)

It is not trivial to count
∑

Gb∈T (n,λ,2) I[(G \ Z)b : separated]
We will derive upper bound by counting bipartite configurations

Bipartite configuration

C1 V1

I1 V0 I2

V2 C2

C0

If nodes in V0 are broken, the network is breakdown
Bipartite configuration represents a bipartite graph that are separated if V0

are removed



Proof (3: Bipartite configuration)

Each bipartite graph corresponds to at least 2 bipartite configurations

If count the bipartite configuration with certain condtion, we have an
upper bound of

∑
Gb∈T (n,λ,2) I[(G \ Z)b : separated]

Example: n = 7, λ = 2
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Proof (4: Number of bipartite configuration)

n0 := |V0|, n1 := |V1|, i1 := |I1|, i2 := |I2|
(Number of the other sets of nodes depends on n0, n1, i1, i2 )

An0,n1,i1,i2 : the number of bipartite configuration with n0, n1, i1, i2

An0,n1,i1,i2 = (λn)!
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Proof (5: Upper bound)

K(j): the number of bipartite configurations n0 = j
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Conclusion and on going work

Conclusion

We have studied the network reliability problem under node fault
model

We have derived an upper bound of average network breakdown
probability

Simulation results shows that the upper bound is tight

On going work

Asymptotic analysis of network breakdown probability under node
fault model


