Bounded Single Insertion/Deletion Correcting Codes

Takayuki Nozaki

Yamaguchi University

July 11th, 2019

Overview

r-bounded single insertion/deletion correcting (r-BSIDC) code

- (Properties)
 - Correcting single insertion/deletion
 - (Assumption) receiver knows the range of positions occurring insertion/deletion (The range is r)
- (Application) Component codes for burst insertion/deletion correcting codes

Purpose of this research

Construction of r-BSIDC codes with large cardinality

Outline of this talk

- **1** Definitions and Examples
- 2 Existing codes (ST code, Shifted VT code)
- 3 Constructed codes (Exponential coefficient code, Odd coefficient code)

(Construction, Cardinality, Decoding algorithm)

Definition and Example (1)

Definition: *r*-bounded single deletion correcting code

There exists a decoder which corrects a single deletion from the received sequence y and the range of deletion positions $[s, s + r - 1] := \{s, s + 1, \dots, s + r - 1\}$ (for all $x \in C$, $s \in [1, n - r + 1]$)

Example: 2-bounded single deletion correcting code n = 3

$C = \{000, 110, 011\}$							
deletion position	{1,2}	{2,3}					
000	{00}	{00}					
110	{10}	$\{10, 11\}$					
011	{11,01}	{01}					

Definition and Example (2)

Definition: *r*-bounded single insertion correcting code

There exists a decoder which corrects a single insertion from the received sequence y and the range of insertion positions [s, s + r] (for all $x \in C$, $s \in [1, n - r + 1]$)

E	Example: 2-bounded single insertion correcting code $n = 3$							
	$C = \{000, 110, 011\}$							
	insetion position	{1,2,3}	{2,3,4}					
	000	$\{0000, 1000, 0100, 0010\}$	$\{0000, 0100, 0010, 0001\}$					
	110	$\{0110, 1010, 1100, 1110\}$	$\{1010, 1100, 1110, 1101\}$					
	011	$\{0011, 0101, 1011, 0111\}$	$\{0011, 0101, 0110, 0111\}$					

Equivalence of insertion correction and deletion correction

Theorem 1

Code C is an r-bounded single deletion correcting code \iff Code C is an r-bounded single insertion correcting code

(c.f.)

 $\begin{array}{l} \mathsf{Code}\ C \text{ is a single deletion correcting code} \\ \Longleftrightarrow \ \mathsf{Code}\ C \text{ is a single insertion correcting code} \end{array}$

If we want to prove that C is r-bounded single insertion/deletion correcting,

then we need to only prove that C is r-bounded single deletion correcting

Existing codes

Substitution-Transposition (ST) code [Abdel-Ghaffar1998] A 2-BSIDC code (proved by [Cheng2014]) $(a \in \{0, 1, 2\})$ $ST_a(n) = \{ x = (x_1, x_2, ..., x_n) \in \{0, 1\}^n \mid 1x_1 + 2x_2 + 1x_3 + 2x_4 + 1x_5 + \cdots \equiv a \pmod{3} \},$

Shifted VT code [Schoeny2017] An r-BSIDC code $(a \in \{0, 1, \dots, r-1\}, b \in \{0, 1\})$ SVT_{a,b} $(n, r) = \{ \boldsymbol{x} \in \{0, 1\}^n \mid \sum_{i=1}^n ix_i \equiv a \pmod{r}, \sum_{i=1}^n x_i \equiv b \pmod{2} \}$

(Example) $SVT_{a,b}(n,4)$

$$\begin{cases} x_1 + 2x_2 + 3x_3 + \dots + 1x_5 + 2x_6 + 3x_7 + \dots \equiv a \pmod{4} \\ x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 + \dots \equiv b \pmod{2} \end{cases}$$

Remarks for existing codes

SVT codes are not generalization of ST codes

$$ST_{a}(n) = \{ \boldsymbol{x} \in \{0,1\}^{n} \mid x_{1} + 2x_{2} + x_{3} + 2x_{4} + \dots \equiv a \pmod{3} \}$$

$$SVT_{a,b}(n,2) = \{ \boldsymbol{x} \in \{0,1\}^{n} \mid x_{1} + 0x_{2} + x_{3} + 0x_{4} + \dots \equiv a \pmod{2} ,$$

$$x_{1} + x_{2} + x_{3} + x_{4} + \dots \equiv b \pmod{2} \}$$

For
$$n = 3$$

 $ST_0(3) = \{000, 110, 011\}$ $ST_1(3) = \{100, 001, 111\}$ $ST_2(3) = \{010, 101\}$ $\begin{aligned} & \text{SVT}_{0,0}(3,2) = \{000,101\} \\ & \text{SVT}_{0,1}(3,2) = \{010,111\} \\ & \text{SVT}_{1,0}(3,2) = \{110,011\} \\ & \text{SVT}_{1,1}(3,2) = \{100,001\} \end{aligned}$

 $|ST_0(3)| > |SVT_{a,b}(3,2)|$

Contributions of this work

Construct two r-bounded SIDC codes (efficient decodable, large cardinality)

Exponential coefficient (EC) code

$$E_a(n,r) := \{ \boldsymbol{x} \in \{0,1\}^n \mid \sum_{i=1}^n 2^{i-1} x_i \equiv a \pmod{2^{r-1}+1} \}$$

Generalization of ST codes

• Largest cardinality for $r \leq 3$

Odd coefficient (OC) code

$$O_a(n,r) := \{ \boldsymbol{x} \in \{0,1\}^n \mid \sum_{i=1}^n (2i-1)x_i \equiv a \pmod{2r} \} \\ = \{ \boldsymbol{x} \mid x_1 + 3x_2 + 5x_3 + 7x_4 + \dots \equiv a \pmod{2r} \}$$

• Largest cardinality for
$$r \ge 4$$

Exponential coefficient code (1: Remarks)

$$E_a(n,r) := \{ \boldsymbol{x} \in \{0,1\}^n \mid \sum_{i=1}^n 2^{i-1} x_i \equiv a \pmod{2^{r-1}+1} \}$$
$$= \{ \boldsymbol{x} \mid x_1 + 2x_2 + 4x_3 + 8x_4 + \dots \equiv a \pmod{2^{r-1}+1} \}$$

(Examples)

$$E_a(n,2) = \{ \boldsymbol{x} \mid x_1 + 2x_2 + x_3 + 2x_4 + x_5 + 2x_6 + \dots \equiv a \pmod{3} \}, \\ E_a(n,3) = \{ \boldsymbol{x} \mid x_1 + 2x_2 + 4x_3 + 3x_4 + x_5 + 2x_6 + \dots \equiv a \pmod{5} \}.$$

Remark 1

EC codes $E_a(n,r)$ are generalization of ST codes $(E_a(n,2) = ST_a(n))$

 $ST_a(n) = \{ \boldsymbol{x} \in \{0,1\}^n \mid x_1 + 2x_2 + x_3 + 2x_4 + x_5 + 2x_6 + \dots \equiv a \pmod{3} \}$

Exponential coefficient code (2: Cardinality)

Proposition 2: Cardinality of EC code

For all a, n, r, the following holds:

$$|E_a(n,r)| = \begin{cases} \left[2^n/(2^{r-1}+1)\right] & \text{if } a < \operatorname{rem}(2^n, 2^{r-1}+1), \\ \left\lfloor 2^n/(2^{r-1}+1) \right\rfloor & \text{if } a \ge \operatorname{rem}(2^n, 2^{r-1}+1). \end{cases}$$

In particular, the maximum value achieves at a=0

- $\lceil x \rceil$: ceiling function
- $\lfloor x \rfloor$: floor function
- $\operatorname{rem}(A, B)$: remainder of $A \div B$

Exponential coefficient code (3: Decoding algorithm 1) Input: Received word $\boldsymbol{y} = (y_1, y_2, \dots, y_{n-1})$, deletion range [s, s + r - 1]Output: Estimated word $\hat{\boldsymbol{x}} = (\hat{x}_1, \hat{x}_2, \dots, \hat{x}_n) \in E_a(n, r)$

Since the decoder knows deletion range,

$$\hat{x}_{[1,s-1]} = y_{[1,s-1]}, \qquad \hat{x}_{[s+r,n]} = y_{[s+r-1,n-1]}$$

$$\begin{array}{l} (x_1, x_2, \dots, x_{s-1}, x_s, x_{s+1}, \dots, x_{s+r-1}, x_{s+r} \quad , \dots, x_n) \\ = & (y_1, y_2, \dots, y_{s-1}, d \quad , y_s \quad , \dots, y_{s+r-2}, y_{s+r-1}, \dots, y_{n-1}) \quad \text{or} \\ = & (y_1, y_2, \dots, y_{s-1}, y_s, d \quad , \dots, y_{s+r-2}, y_{s+r-1}, \dots, y_{n-1}) \quad \text{or}. \\ = & (y_1, y_2, \dots, y_{s-1}, y_s, y_{s+1}, \dots, d \quad , y_{s+r-1}, \dots, y_{n-1}) \end{array}$$

Hence, we consider the decoding algorithm for the following code

$$E_{b,s}(r) = \{ (x_s, x_{s+1}, \dots, x_{s+r-1}) \mid \sum_{i=s}^{s+r-1} 2^{i-1} x_i \equiv b \pmod{2^{r-1}+1} \}$$

Exponential coefficient code (4: Decoding algorithm 2)

$$E_{b,s}(r) = \{ (x_s, x_{s+1}, \dots, x_{s+r-1}) \mid \sum_{i=s}^{s+r-1} 2^{i-1} x_i \equiv b \pmod{2^{r-1}+1} \}$$

= $\{ (x_1, x_2, \dots, x_r) \mid \sum_{i=1}^{r-1} 2^{i-1} x_i \equiv 2^{-s+1} b \pmod{2^{r-1}+1} \}$
= $E_{2^{-s+1}b,1}(r)$

Thus, we consider the decoding algorithm for the following code:

$$E_{a,1}(r) = \{ (x_1, x_2, \dots, x_r) \mid \sum_{i=1}^{r-1} 2^{i-1} x_i \equiv a \pmod{2^{r-1} + 1} \}$$

= $E_a(r, r)$

Since $|E_a(r,r)| \leq 2$ and $E_a(r,r) = \{$ binary number for a, binary number for $a + 2^{r-1} + 1\}$, the decoder calculate the Levenshtein distance between y and those codewords.

Odd coefficient code (1: Remarks)

$$O_a(n,r) := \{ \boldsymbol{x} \in \{0,1\}^n \mid \sum_{i=1}^n (2i-1)x_i \equiv a \pmod{2r} \} \\ = \{ \boldsymbol{x} \mid x_1 + 3x_2 + 5x_3 + 7x_4 + \dots \equiv a \pmod{2r} \}$$

(Examples)

 $O_a(n,3) := \{ \boldsymbol{x} \mid x_1 + 3x_2 + 5x_3 + x_4 + 3x_5 + 5x_6 + \dots \equiv a \pmod{6} \}$ $O_a(n,4) := \{ \boldsymbol{x} \mid x_1 + 3x_2 + 5x_3 + 7x_4 + x_5 + 3x_6 + \dots \equiv a \pmod{8} \}$ (Property)

$$\sum_{i=1}^{n} (2i-1)x_i \equiv a \pmod{2r} \Rightarrow \sum_{i=1}^{n} x_i \equiv a \pmod{2}$$

Decoding algorithm for OC codes is similar one for SVT codes

(c.f.) SVT code

$$\begin{aligned} \operatorname{SVT}_{a,b}(n,r) &= \{ \boldsymbol{x} \in \{0,1\}^n \mid \sum_{i=1}^n ix_i \equiv a \pmod{r}, \\ &\sum_{i=1}^n x_i \equiv b \pmod{2} \end{aligned}$$

Odd coefficient code (2: Cardinality 1)

Proposition 2: cardinality of OC code

Assume n = rs + k (s is quotient of $n \div r$, k is reminder of $n \div r$)

$$\begin{split} |O_a(n,r)| &= \frac{1}{2r} \Bigg[\sum_{d \mid r,d: \mathsf{odd}} 2^{sr/d} \sum_{\boldsymbol{y} \in \{0,1\}^k} c_d(a - \langle \boldsymbol{m}_2, \boldsymbol{y} \rangle) \\ &+ \sum_{d \mid r,d: \mathsf{even}} 2^{sr/d} \sum_{\boldsymbol{y} \in \{0,1\}^k} c_{2d}(a - \langle \boldsymbol{m}_2, \boldsymbol{y} \rangle) \Bigg] \end{split}$$

 $\langle \boldsymbol{m}_2, \boldsymbol{y} \rangle := \sum_{i=1}^k (2i-1)y_i$

$$c_d(a) := \phi(d) \frac{\mu(d/(a,d))}{\phi(d/(a,d))}$$

 $\phi(d) \colon$ Euler's totient function, $\mu(d) \colon$ Möbius function, $(a,d) \colon$ maximum common divisor of a and d

Takayuki Nozaki (Yamaguchi University)

Bounded Single IDC Codes

Odd coefficient code (3: Cardinality 2)

Proposition 3: Cardinality of SVT code

Assume n = rs + k (s is quotient of $n \div r$, k is reminder of $n \div r$)

$$|\mathrm{SVT}_{a,b}(n,r)| = \frac{1}{2r} \sum_{d|r,d:\mathsf{odd}} 2^{sr/d} \sum_{\boldsymbol{y} \in \{0,1\}^k} c_d(a - \langle \boldsymbol{m}_1, \boldsymbol{y} \rangle)$$

 $\langle \boldsymbol{m}_1, \boldsymbol{y}
angle := \sum_{i=1}^k i y_i$

Proposition 2 and 3 are derived from [Bibak2018]

Odd coefficient code (4: Cardinality 3)

In particular, for n = rs

$$\begin{split} |O_a(n,r)| &= \frac{1}{2r} \sum_{d \mid r,d: \text{odd}} c_d(a) 2^{n/d} + \frac{1}{2r} \sum_{d \mid r,d: \text{even}} c_{2d}(a) 2^{n/d} \\ \text{SVT}_{a,b}(n,r)| &= \frac{1}{2r} \sum_{d \mid r,d: \text{odd}} c_d(a) 2^{n/d} \end{split}$$

The maximum achives at a = 0:

$$\begin{aligned} |O_0(n,r)| &= \frac{1}{2r} \sum_{d|r,d: \text{odd}} c_d(0) 2^{n/d} + \frac{1}{2r} \sum_{d|r,d: \text{even}} c_{2d}(0) 2^{n/d} \\ \text{SVT}_{0,b}(n,r)| &= \frac{1}{2r} \sum_{d|r,d: \text{odd}} c_d(0) 2^{n/d} \end{aligned}$$

If r is even, $\max |O_a(n, r)| > \max |\text{SVT}_{a,b}(n, r)|$ If r is odd, $\max |O_a(n, r)| = \max |\text{SVT}_{a,b}(n, r)|$

Odd coefficient code (5: Decoding algorithm 1)

Input: Received word $\boldsymbol{y} = (y_1, y_2, \dots, y_{n-1})$, Deletion range [s, s+r-1]**Output**: Estimate word $\hat{\boldsymbol{x}} = (\hat{x}_1, \hat{x}_2, \dots, \hat{x}_n) \in O_a(n, r)$

Since the decoder knows deletion range,

$$\hat{x}_{[1,s-1]} = y_{[1,s-1]}, \qquad \hat{x}_{[s+r,n]} = y_{[s+r-1,n-1]}$$

$$\begin{array}{l} (x_1, x_2, \dots, x_{s-1}, x_s, x_{s+1}, \dots, x_{s+r-1}, x_{s+r} \quad , \dots, x_n) \\ = & (y_1, y_2, \dots, y_{s-1}, d \quad , y_s \quad , \dots, y_{s+r-2}, y_{s+r-1}, \dots, y_{n-1}) \quad \text{or} \\ = & (y_1, y_2, \dots, y_{s-1}, y_s, d \quad , \dots, y_{s+r-2}, y_{s+r-1}, \dots, y_{n-1}) \quad \text{or} \dots \\ = & (y_1, y_2, \dots, y_{s-1}, y_s, y_{s+1}, \dots, d \quad , y_{s+r-1}, \dots, y_{n-1}) \end{array}$$

Hence, we consider the decoding algorithm for the following code

$$O_{b,s}(r) = \{ (x_s, x_{s+1}, \dots, x_{s+r-1}) \mid \sum_{i=s}^{s+r-1} (2i-1)x_i \equiv b \pmod{2r} \}$$

Odd coefficient code (6: Decoding algorithm 2)

$$O_{b,s}(r) = \{ (x_s, x_{s+1}, \dots, x_{s+r-1}) \mid \sum_{i=s}^{s+r-1} (2i-1)x_i \equiv b \pmod{2r} \}$$

Similar to the decoding algorithm for SVT code

Require: Received sequence y, code parameters (a, k, r)**Ensure:** Estimated sequence \hat{x}

1: Calculate $w = h_w(\boldsymbol{y})$ and $b = \sum_{i=1}^{r-1} (2i+2k-3)y_i$

2: Set
$$\lambda = \operatorname{rem}(a - w, 2)$$

3: if $\lambda = 0$ then

4: Calculate
$$R_1 = \operatorname{rem}(a - b, 2r)/2$$

5: Search p such that $h_w(\boldsymbol{y}_{[p,r-1]}) = R_1$

6: Output
$$\hat{m{x}} = m{y}_{dash(p,0)}$$

7: **else**

8: Calculate
$$L_0 = \operatorname{rem}(a - b + 1 - 2(k + w), 2r)/2$$

- 9: Search p such that $|\{i \in [1, p] \mid y_i = 0\}| = L_0$
- 10: Output $\hat{m{x}} = m{y}_{dash(p+1,1)}$
- 11: end if

Comparison of cardinalities

r	2	3	4	5	6
$\max_{a,b} \mathrm{SVT}_{a,b}(10,r) $	256	172	128	104	86
$\max_a E_a(10,r) $	342	205	114	61	32
$\max_a O_a(10,r) $	272	172	136	104	91
$\max_{a,b} \mathrm{SVT}_{a,b}(11,r) $	512	344	256	206	172
$\max_{a} E_a(11,r) $	683	410	228	121	63
$\max_a O_a(11,r) $	528	344	266	206	178

EC codes have largest cardinalities for r ≤ 3
OC codes have largest cardinalities for r ≥ 4
If r is even, max |SVT_{a,b}(n,r)| < max |O_a(n,r)|
If r is odd, max |SVT_{a,b}(n,r)| = max |O_a(n,r)|

Conclusion

Construct r-bounded SIDC codes with larger cardinalities

- Exponential coefficient (EC) code
- Odd coefficient (OC) code
- Evaluate the cardinalities
 - If $r \leq 3$, EC codes have largest cardinalities
 - If $r \ge 4$, OC codes have largest cardinalities

(Construction 1) Exponential coefficient code

$$E_a(n,r) := \{ \boldsymbol{x} \in \{0,1\}^n \mid \sum_{i=1}^n 2^{i-1} x_i \equiv a \pmod{2^{r-1}+1} \}$$

(Construction 2) Odd coefficient code

$$O_a(n,r) := \{ \boldsymbol{x} \in \{0,1\}^n \mid \sum_{i=1}^n (2i-1)x_i \equiv a \pmod{2r} \}$$