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Overview

r-bounded single insertion/deletion correcting (r-BSIDC) code

(Properties)

Correcting single insertion/deletion
(Assumption) receiver knows the range of positions occurring
insertion/deletion (The range is r)

(Application) Component codes for burst insertion/deletion correcting
codes

Purpose of this research

Construction of r-BSIDC codes with large cardinality

Outline of this talk

1 Definitions and Examples
2 Existing codes (ST code, Shifted VT code)
3 Constructed codes (Exponential coefficient code, Odd coefficient

code)
(Construction, Cardinality, Decoding algorithm)
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Definition and Example (1)

Definition: r-bounded single deletion correcting code

There exists a decoder which corrects a single deletion from
the received sequence y and
the range of deletion positions [s, s+ r − 1]:= {s, s+ 1, . . . , s+ r − 1}
(for all x ∈ C, s ∈ [1, n− r + 1])

x = (x1, x2, . . ., xs−1, xs, xs+1, xs+2, . . ., xs+r−1, xs+r, . . ., xn)

y = (y1, y2, . . ., ys−1, ys, ys+1, . . ., ys+r−2, ys+r−1, . . ., yn−1)

Example: 2-bounded single deletion correcting code n = 3

C = {000, 110, 011}
deletion position {1,2} {2,3}

000 {00} {00}
110 {10} {10, 11}
011 {11, 01} {01}
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Definition and Example (2)

Definition: r-bounded single insertion correcting code

There exists a decoder which corrects a single insertion from
the received sequence y and
the range of insertion positions [s, s+ r] (for all x ∈ C, s ∈ [1, n− r + 1])

x = (x1, x2, . . ., xs−1, xs, xs+1, . . ., xs+r−1, xs+r, . . ., xn)

y = (y1, y2, . . ., ys−1, ys, ys+1, ys+2, . . ., ys+r, ys+r+1, . . ., yn+1)

Example: 2-bounded single insertion correcting code n = 3

C = {000, 110, 011}
insetion position {1,2,3} {2,3,4}

000 {0000, 1000, 0100, 0010} {0000, 0100, 0010, 0001}
110 {0110, 1010, 1100, 1110} {1010, 1100, 1110, 1101}
011 {0011, 0101, 1011, 0111} {0011, 0101, 0110, 0111}
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Equivalence of insertion correction and deletion correction

Theorem 1

Code C is an r-bounded single deletion correcting code
⇐⇒ Code C is an r-bounded single insertion correcting code

(c.f.)

Code C is a single deletion correcting code
⇐⇒ Code C is a single insertion correcting code

If we want to prove that C is r-bounded single insertion/deletion
correcting,
then we need to only prove that C is r-bounded single deletion correcting
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Existing codes

Substitution-Transposition (ST) code [Abdel-Ghaffar1998]

A 2-BSIDC code (proved by [Cheng2014]) (a ∈ {0, 1, 2})
STa(n) = {x = (x1, x2, . . . , xn) ∈ {0, 1}n |

1x1 + 2x2 + 1x3 + 2x4 + 1x5 + · · · ≡ a (mod 3)},

Shifted VT code [Schoeny2017]

An r-BSIDC code (a ∈ {0, 1, . . . , r − 1}, b ∈ {0, 1})
SVTa,b(n, r) = {x ∈ {0, 1}n |

∑n
i=1 ixi ≡ a (mod r),∑n
i=1 xi ≡ b (mod 2)}

(Example) SVTa,b(n, 4){
x1+2x2+3x3+ +1x5+2x6+3x7+ +· · · ≡ a (mod 4)

x1+ x2+ x3+x4+ x5+ x6+ x7+x8+ · · · ≡ b (mod 2)
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Remarks for existing codes

SVT codes are not generalization of ST codes

STa(n) = {x ∈ {0, 1}n | x1 + 2x2 + x3 + 2x4 + · · · ≡ a (mod 3)}
SVTa,b(n, 2) = {x ∈ {0, 1}n | x1 + 0x2 + x3 + 0x4 + · · · ≡ a (mod 2),

x1 + x2 + x3 + x4 + · · · ≡ b (mod 2)}

For n = 3

ST0(3) = {000, 110, 011} SVT0,0(3, 2) = {000, 101}
ST1(3) = {100, 001, 111} SVT0,1(3, 2) = {010, 111}
ST2(3) = {010, 101} SVT1,0(3, 2) = {110, 011}

SVT1,1(3, 2) = {100, 001}

|ST0(3)| > |SVTa,b(3, 2)|
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Contributions of this work

Construct two r-bounded SIDC codes (efficient decodable, large
cardinality)

Exponential coefficient (EC) code

Ea(n, r) := {x ∈ {0, 1}n |
∑n

i=12
i−1xi ≡ a (mod 2r−1 + 1)}

Generalization of ST codes

Largest cardinality for r ≤ 3

Odd coefficient (OC) code

Oa(n, r) := {x ∈ {0, 1}n |
∑n

i=1(2i− 1)xi ≡ a (mod 2r)}
= {x | x1 + 3x2 + 5x3 + 7x4 + · · · ≡ a (mod 2r)}

Largest cardinality for r ≥ 4
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Exponential coefficient code (1: Remarks)

Ea(n, r) := {x ∈ {0, 1}n |
∑n

i=12
i−1xi ≡ a (mod 2r−1 + 1)}

= {x | x1 + 2x2 + 4x3 + 8x4 + · · · ≡ a (mod 2r−1 + 1)}

(Examples)

Ea(n, 2) = {x | x1 + 2x2 + x3 + 2x4 + x5 + 2x6 + · · · ≡ a (mod 3)},
Ea(n, 3) = {x | x1 + 2x2 + 4x3 + 3x4 + x5 + 2x6 + · · · ≡ a (mod 5)}.

Remark 1

EC codes Ea(n, r) are generalization of ST codes (Ea(n, 2) = STa(n))

STa(n) = {x ∈ {0, 1}n | x1+2x2+x3+2x4+x5+2x6+· · · ≡ a (mod 3)}
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Exponential coefficient code (2: Cardinality)

Proposition 2: Cardinality of EC code

For all a, n, r, the following holds:

|Ea(n, r)| =

{⌈
2n/(2r−1 + 1)

⌉
if a < rem(2n, 2r−1 + 1),⌊

2n/(2r−1 + 1)
⌋

if a ≥ rem(2n, 2r−1 + 1).

In particular, the maximum value achieves at a = 0

⌈x⌉: ceiling function

⌊x⌋: floor function
rem(A,B): remainder of A÷B
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Exponential coefficient code (3: Decoding algorithm 1)
Input: Received word y = (y1, y2, . . . , yn−1), deletion range [s, s+ r − 1]
Output: Estimated word x̂ = (x̂1, x̂2, . . . , x̂n) ∈ Ea(n, r)

Since the decoder knows deletion range,

x̂[1,s−1] = y[1,s−1], x̂[s+r,n] = y[s+r−1,n−1]

(x1, x2, . . . , xs−1,xs,xs+1, . . .,xs+r−1,xs+r , . . . , xn)

= (y1, y2, . . . , ys−1 ,d ,ys , . . .,ys+r−2 ,ys+r−1, . . . , yn−1) or

= (y1, y2, . . . , ys−1 ,ys ,d , . . .,ys+r−2 ,ys+r−1, . . . , yn−1) or..

= (y1, y2, . . . , ys−1 ,ys ,ys+1 , . . .,d ,ys+r−1, . . . , yn−1)

Hence, we consider the decoding algorithm for the following code

Eb,s(r) = {(xs, xs+1, . . . , xs+r−1) |
∑s+r−1

i=s 2i−1xi ≡ b (mod 2r−1 + 1)}
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Exponential coefficient code (4: Decoding algorithm 2)

Eb,s(r) = {(xs, xs+1, . . . , xs+r−1) |
∑s+r−1

i=s 2i−1xi ≡ b (mod 2r−1 + 1)}
= {(x1, x2, . . . , xr) |

∑r−1
i=1 2

i−1xi ≡ 2−s+1b (mod 2r−1 + 1)}
= E2−s+1b,1(r)

Thus, we consider the decoding algorithm for the following code:

Ea,1(r) = {(x1, x2, . . . , xr) |
∑r−1

i=1 2
i−1xi ≡ a (mod 2r−1 + 1)}

= Ea(r, r)

Since |Ea(r, r)| ≤ 2 and
Ea(r, r) = {binary number for a, binary number for a+ 2r−1 + 1},
the decoder calculate the Levenshtein distance between y and those
codewords.
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Odd coefficient code (1: Remarks)

Oa(n, r) := {x ∈ {0, 1}n |
∑n

i=1(2i− 1)xi ≡ a (mod 2r)}
= {x | x1 + 3x2 + 5x3 + 7x4 + · · · ≡ a (mod 2r)}

(Examples)

Oa(n, 3) := {x | x1 + 3x2 + 5x3 + x4 + 3x5 + 5x6 + · · · ≡ a (mod 6)}
Oa(n, 4) := {x | x1 + 3x2 + 5x3 + 7x4 + x5 + 3x6 + · · · ≡ a (mod 8)}

(Property)∑n
i=1(2i− 1)xi ≡ a (mod 2r) ⇒

∑n
i=1xi ≡ a (mod 2)

Decoding algorithm for OC codes is similar one for SVT codes

(c.f.) SVT code

SVTa,b(n, r) = {x ∈ {0, 1}n |
∑n

i=1 ixi ≡ a (mod r),∑n
i=1 xi ≡ b (mod 2)}
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Odd coefficient code (2: Cardinality 1)

Proposition 2: cardinality of OC code

Assume n = rs+ k (s is quotient of n÷ r, k is reminder of n÷ r)

|Oa(n, r)| =
1

2r

[ ∑
d|r,d:odd

2sr/d
∑

y∈{0,1}k
cd(a− ⟨m2,y⟩)

+
∑

d|r,d:even

2sr/d
∑

y∈{0,1}k
c2d(a− ⟨m2,y⟩)

]

⟨m2,y⟩ :=
∑k

i=1(2i− 1)yi

cd(a) := ϕ(d)
µ(d/(a, d))

ϕ(d/(a, d))

ϕ(d): Euler’s totient function, µ(d): Möbius function,
(a, d): maximum common divisor of a and d
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Odd coefficient code (3: Cardinality 2)

Proposition 3: Cardinality of SVT code

Assume n = rs+ k (s is quotient of n÷ r, k is reminder of n÷ r)

|SVTa,b(n, r)| =
1

2r

∑
d|r,d:odd

2sr/d
∑

y∈{0,1}k
cd(a− ⟨m1,y⟩)

⟨m1,y⟩ :=
∑k

i=1 iyi

Proposition 2 and 3 are derived from [Bibak2018]
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Odd coefficient code (4: Cardinality 3)
In particular, for n = rs

|Oa(n, r)| =
1

2r

∑
d|r,d:odd

cd(a)2
n/d +

1

2r

∑
d|r,d:even

c2d(a)2
n/d

|SVTa,b(n, r)| =
1

2r

∑
d|r,d:odd

cd(a)2
n/d

The maximum achives at a = 0:

|O0(n, r)| =
1

2r

∑
d|r,d:odd

cd(0)2
n/d +

1

2r

∑
d|r,d:even

c2d(0)2
n/d

|SVT0,b(n, r)| =
1

2r

∑
d|r,d:odd

cd(0)2
n/d

If r is even, max |Oa(n, r)| > max |SVTa,b(n, r)|
If r is odd, max |Oa(n, r)| = max |SVTa,b(n, r)|
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Odd coefficient code (5: Decoding algorithm 1)
Input: Received word y = (y1, y2, . . . , yn−1), Deletion range [s, s+ r − 1]
Output: Estimate word x̂ = (x̂1, x̂2, . . . , x̂n) ∈ Oa(n, r)

Since the decoder knows deletion range,

x̂[1,s−1] = y[1,s−1], x̂[s+r,n] = y[s+r−1,n−1]

(x1, x2, . . . , xs−1,xs,xs+1, . . .,xs+r−1,xs+r , . . . , xn)

= (y1, y2, . . . , ys−1 ,d ,ys , . . .,ys+r−2 ,ys+r−1, . . . , yn−1) or

= (y1, y2, . . . , ys−1 ,ys ,d , . . .,ys+r−2 ,ys+r−1, . . . , yn−1) or...

= (y1, y2, . . . , ys−1 ,ys ,ys+1 , . . .,d ,ys+r−1, . . . , yn−1)

Hence, we consider the decoding algorithm for the following code

Ob,s(r) = {(xs, xs+1, . . . , xs+r−1) |
∑s+r−1

i=s (2i− 1)xi ≡ b (mod 2r)}
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Odd coefficient code (6: Decoding algorithm 2)

Ob,s(r) = {(xs, xs+1, . . . , xs+r−1) |
∑s+r−1

i=s (2i− 1)xi ≡ b (mod 2r)}

Similar to the decoding algorithm for SVT code

Require: Received sequence y, code parameters (a, k, r)
Ensure: Estimated sequence x̂
1: Calculate w = hw(y) and b =

∑r−1
i=1 (2i+ 2k − 3)yi

2: Set λ = rem(a− w, 2)
3: if λ = 0 then
4: Calculate R1 = rem(a− b, 2r)/2
5: Search p such that hw(y[p,r−1]) = R1

6: Output x̂ = y⊢(p,0)
7: else
8: Calculate L0 = rem(a− b+ 1− 2(k + w), 2r)/2
9: Search p such that |{i ∈ [1, p] | yi = 0}| = L0

10: Output x̂ = y⊢(p+1,1)

11: end if
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Comparison of cardinalities

r 2 3 4 5 6

maxa,b |SVTa,b(10, r)| 256 172 128 104 86

maxa |Ea(10, r)| 342 205 114 61 32

maxa |Oa(10, r)| 272 172 136 104 91

maxa,b |SVTa,b(11, r)| 512 344 256 206 172

maxa |Ea(11, r)| 683 410 228 121 63

maxa |Oa(11, r)| 528 344 266 206 178

EC codes have largest cardinalities for r ≤ 3

OC codes have largest cardinalities for r ≥ 4

If r is even, max |SVTa,b(n, r)| < max |Oa(n, r)|
If r is odd, max |SVTa,b(n, r)| = max |Oa(n, r)|
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Conclusion

Construct r-bounded SIDC codes with larger cardinalities

Exponential coefficient (EC) code
Odd coefficient (OC) code

Evaluate the cardinalities

If r ≤ 3, EC codes have largest cardinalities
If r ≥ 4, OC codes have largest cardinalities

(Construction 1) Exponential coefficient code

Ea(n, r) := {x ∈ {0, 1}n |
∑n

i=1 2
i−1xi ≡ a (mod 2r−1 + 1)}

(Construction 2) Odd coefficient code

Oa(n, r) := {x ∈ {0, 1}n |
∑n

i=1(2i− 1)xi ≡ a (mod 2r)}
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