Bounded Single Insertion/Deletion Correcting Codes

Takayuki Nozaki
Yamaguchi University

July 11th, 2019

Overview

r-bounded single insertion/deletion correcting (r-BSIDC) code

- (Properties)
- Correcting single insertion/deletion
- (Assumption) receiver knows the range of positions occurring insertion/deletion (The range is r)
■ (Application) Component codes for burst insertion/deletion correcting codes

Purpose of this research

Construction of r-BSIDC codes with large cardinality
Outline of this talk
1 Definitions and Examples
2 Existing codes (ST code, Shifted VT code)
3 Constructed codes (Exponential coefficient code, Odd coefficient code)
(Construction, Cardinality, Decoding algorithm)

Definition and Example (1)

Definition: r-bounded single deletion correcting code
There exists a decoder which corrects a single deletion from the received sequence y and the range of deletion positions $[s, s+r-1]:=\{s, s+1, \ldots, s+r-1\}$ (for all $\boldsymbol{x} \in C, s \in[1, n-r+1]$)

$$
\begin{aligned}
& \boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{s-1}, x_{s}, x_{s+1}, x_{s+2}, \ldots, x_{s+r-1}, x_{s+r}, \ldots, x_{n}\right) \\
& \boldsymbol{y}=\left(y_{1}, y_{2}, \ldots, y_{s-1}, y_{s}, \quad y_{s+1}, \ldots, y_{s+r-2}, y_{s+r-1}, \ldots, y_{n-1}\right)
\end{aligned}
$$

Example: 2-bounded single deletion correcting code $n=3$

$C=\{000,110,011\}$		
deletion position	$\{1,2\}$	$\{2,3\}$
000	$\{00\}$	$\{00\}$
110	$\{10\}$	$\{10,11\}$
011	$\{11,01\}$	$\{01\}$

Definition and Example (2)

Definition: r-bounded single insertion correcting code
There exists a decoder which corrects a single insertion from the received sequence y and the range of insertion positions $[s, s+r]$ (for all $\boldsymbol{x} \in C, s \in[1, n-r+1]$)

$$
\begin{aligned}
& \boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{s-1}, x_{s}, \quad x_{s+1}, \ldots, x_{s+r-1}, \quad x_{s+r}, \ldots, x_{n}\right) \\
& \boldsymbol{y}=\left(y_{1}, y_{2}, \ldots, y_{s-1}, y_{s}, y_{s+1}, y_{s+2}, \ldots, \quad y_{s+r}, y_{s+r+1}, \ldots, y_{n+1}\right)
\end{aligned}
$$

Example: 2-bounded single insertion correcting code $n=3$

$$
C=\{000,110,011\}
$$

insetion position	$\{1,2,3\}$	$\{2,3,4\}$
000	$\{0000,1000,0100,0010\}$	$\{0000,0100,0010,0001\}$
110	$\{0110,1010,1100,1110\}$	$\{1010,1100,1110,1101\}$
011	$\{0011,0101,1011,0111\}$	$\{0011,0101,0110,0111\}$

Equivalence of insertion correction and deletion correction

Theorem 1
Code C is an r-bounded single deletion correcting code \Longleftrightarrow Code C is an r-bounded single insertion correcting code

Code C is a single deletion correcting code \Longleftrightarrow Code C is a single insertion correcting code

If we want to prove that C is r-bounded single insertion/deletion correcting, then we need to only prove that C is r-bounded single deletion correcting

Existing codes

Substitution-Transposition (ST) code [Abdel-Ghaffar1998]
A 2-BSIDC code (proved by [Cheng2014]) ($a \in\{0,1,2\}$)

$$
\begin{aligned}
\operatorname{ST}_{a}(n)= & \left\{\boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in\{0,1\}^{n} \mid\right. \\
& \left.1 x_{1}+2 x_{2}+1 x_{3}+2 x_{4}+1 x_{5}+\cdots \equiv a \quad(\bmod 3)\right\}
\end{aligned}
$$

Shifted VT code [Schoeny2017]
An r-BSIDC code $(a \in\{0,1, \ldots, r-1\}, b \in\{0,1\})$

$$
\begin{array}{r}
\operatorname{SVT}_{a, b}(n, r)=\left\{\boldsymbol{x} \in\{0,1\}^{n} \mid \sum_{i=1}^{n} i x_{i} \equiv a \quad(\bmod r),\right. \\
\left.\sum_{i=1}^{n} x_{i} \equiv b \quad(\bmod 2)\right\}
\end{array}
$$

(Example) $\operatorname{SVT}_{a, b}(n, 4)$

$$
\left\{\begin{array}{l}
x_{1}+2 x_{2}+3 x_{3}+\quad+1 x_{5}+2 x_{6}+3 x_{7}+\quad+\cdots \equiv a \quad(\bmod 4) \\
x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}+x_{7}+x_{8}+\cdots \equiv b \quad(\bmod 2)
\end{array}\right.
$$

Remarks for existing codes

SVT codes are not generalization of ST codes

$$
\begin{aligned}
& \operatorname{ST}_{a}(n)=\left\{\boldsymbol{x} \in\{0,1\}^{n} \mid x_{1}+2 x_{2}+x_{3}+2 x_{4}+\cdots \equiv a \quad(\bmod 3)\right\} \\
& \operatorname{SVT}_{a, b}(n, 2)=\left\{\boldsymbol{x} \in\{0,1\}^{n} \mid x_{1}+0 x_{2}+x_{3}+0 x_{4}+\cdots \equiv a \quad(\bmod 2),\right. \\
&\left.x_{1}+x_{2}+x_{3}+x_{4}+\cdots \equiv b \quad(\bmod 2)\right\}
\end{aligned}
$$

For $n=3$

$$
\begin{array}{ll}
\operatorname{ST}_{0}(3)=\{000,110,011\} & \operatorname{SVT}_{0,0}(3,2)=\{000,101\} \\
\operatorname{ST}_{1}(3)=\{100,001,111\} & \operatorname{SVT}_{0,1}(3,2)=\{010,111\} \\
\operatorname{ST}_{2}(3)=\{010,101\} & \operatorname{SVT}_{1,0}(3,2)=\{110,011\} \\
& \operatorname{SVT}_{1,1}(3,2)=\{100,001\}
\end{array}
$$

$\left|\mathrm{ST}_{0}(3)\right|>\left|\operatorname{SVT}_{a, b}(3,2)\right|$

Contributions of this work

Construct two r-bounded SIDC codes (efficient decodable, large cardinality)

Exponential coefficient (EC) code

$$
E_{a}(n, r):=\left\{\boldsymbol{x} \in\{0,1\}^{n} \mid \sum_{i=1}^{n} 2^{i-1} x_{i} \equiv a \quad\left(\bmod 2^{r-1}+1\right)\right\}
$$

- Generalization of ST codes
- Largest cardinality for $r \leq 3$

Odd coefficient (OC) code

$$
\begin{aligned}
O_{a}(n, r) & :=\left\{\boldsymbol{x} \in\{0,1\}^{n} \mid \sum_{i=1}^{n}(2 i-1) x_{i} \equiv a \quad(\bmod 2 r)\right\} \\
& =\left\{\boldsymbol{x} \mid x_{1}+3 x_{2}+5 x_{3}+7 x_{4}+\cdots \equiv a \quad(\bmod 2 r)\right\}
\end{aligned}
$$

■ Largest cardinality for $r \geq 4$

Exponential coefficient code (1: Remarks)

$$
\begin{aligned}
E_{a}(n, r) & :=\left\{\boldsymbol{x} \in\{0,1\}^{n} \mid \sum_{i=1}^{n} 2^{i-1} x_{i} \equiv a \quad\left(\bmod 2^{r-1}+1\right)\right\} \\
& =\left\{\boldsymbol{x} \mid x_{1}+2 x_{2}+4 x_{3}+8 x_{4}+\cdots \equiv a \quad\left(\bmod 2^{r-1}+1\right)\right\}
\end{aligned}
$$

(Examples)

$$
\begin{aligned}
& E_{a}(n, 2)=\left\{\boldsymbol{x} \mid x_{1}+2 x_{2}+x_{3}+2 x_{4}+x_{5}+2 x_{6}+\cdots \equiv a \quad(\bmod 3)\right\} \\
& E_{a}(n, 3)=\left\{\boldsymbol{x} \mid x_{1}+2 x_{2}+4 x_{3}+3 x_{4}+x_{5}+2 x_{6}+\cdots \equiv a \quad(\bmod 5)\right\}
\end{aligned}
$$

Remark 1

EC codes $E_{a}(n, r)$ are generalization of ST codes $\quad\left(E_{a}(n, 2)=\mathrm{ST}_{a}(n)\right)$

$$
\operatorname{ST}_{a}(n)=\left\{\boldsymbol{x} \in\{0,1\}^{n} \mid x_{1}+2 x_{2}+x_{3}+2 x_{4}+x_{5}+2 x_{6}+\cdots \equiv a \quad(\bmod 3)\right\}
$$

Exponential coefficient code (2: Cardinality)

Proposition 2: Cardinality of EC code

For all a, n, r, the following holds:

$$
\left|E_{a}(n, r)\right|= \begin{cases}\left\lceil 2^{n} /\left(2^{r-1}+1\right)\right\rceil & \text { if } a<\operatorname{rem}\left(2^{n}, 2^{r-1}+1\right), \\ \left\lfloor 2^{n} /\left(2^{r-1}+1\right)\right\rfloor & \text { if } a \geq \operatorname{rem}\left(2^{n}, 2^{r-1}+1\right) .\end{cases}
$$

In particular, the maximum value achieves at $a=0$

- $\lceil x\rceil$: ceiling function
- $\lfloor x\rfloor$: floor function
- $\operatorname{rem}(A, B)$: remainder of $A \div B$

Exponential coefficient code (3: Decoding algorithm 1)

Input: Received word $\boldsymbol{y}=\left(y_{1}, y_{2}, \ldots, y_{n-1}\right)$, deletion range $[s, s+r-1$]
Output: Estimated word $\hat{\boldsymbol{x}}=\left(\hat{x}_{1}, \hat{x}_{2}, \ldots, \hat{x}_{n}\right) \in E_{a}(n, r)$
Since the decoder knows deletion range,

$$
\hat{\boldsymbol{x}}_{[1, s-1]}=\boldsymbol{y}_{[1, s-1]}, \quad \hat{\boldsymbol{x}}_{[s+r, n]}=\boldsymbol{y}_{[s+r-1, n-1]}
$$

$$
\begin{aligned}
& \left(x_{1}, x_{2}, \ldots, x_{s-1}, x_{s}, x_{s+1}, \ldots, x_{s+r-1}, x_{s+r}, \ldots, x_{n}\right) \\
= & \left(y_{1}, y_{2}, \ldots, y_{s-1}, d, y_{s}, \ldots, y_{s+r-2}, y_{s+r-1}, \ldots, y_{n-1}\right) \text { or } \\
= & \left(y_{1}, y_{2}, \ldots, y_{s-1}, y_{s}, d \quad, \ldots, y_{s+r-2}, y_{s+r-1}, \ldots, y_{n-1}\right) \text { or.. } \\
= & \left(y_{1}, y_{2}, \ldots, y_{s-1}, y_{s}, y_{s+1}, \ldots, d \quad, y_{s+r-1}, \ldots, y_{n-1}\right)
\end{aligned}
$$

Hence, we consider the decoding algorithm for the following code

$$
E_{b, s}(r)=\left\{\left(x_{s}, x_{s+1}, \ldots, x_{s+r-1}\right) \mid \sum_{i=s}^{s+r-1} 2^{i-1} x_{i} \equiv b \quad\left(\bmod 2^{r-1}+1\right)\right\}
$$

Exponential coefficient code (4: Decoding algorithm 2)

$$
\begin{aligned}
E_{b, s}(r) & =\left\{\left(x_{s}, x_{s+1}, \ldots, x_{s+r-1}\right) \mid \sum_{i=s}^{s+r-1} 2^{i-1} x_{i} \equiv b \quad\left(\bmod 2^{r-1}+1\right)\right\} \\
& =\left\{\left(x_{1}, x_{2}, \ldots, x_{r}\right) \mid \sum_{i=1}^{r-1} 2^{i-1} x_{i} \equiv 2^{-s+1} b \quad\left(\bmod 2^{r-1}+1\right)\right\} \\
& =E_{2^{-s+1} b, 1}(r)
\end{aligned}
$$

Thus, we consider the decoding algorithm for the following code:

$$
\begin{aligned}
E_{a, 1}(r) & =\left\{\left(x_{1}, x_{2}, \ldots, x_{r}\right) \mid \sum_{i=1}^{r-1} 2^{i-1} x_{i} \equiv a \quad\left(\bmod 2^{r-1}+1\right)\right\} \\
& =E_{a}(r, r)
\end{aligned}
$$

Since $\left|E_{a}(r, r)\right| \leq 2$ and
$E_{a}(r, r)=\left\{\right.$ binary number for a, binary number for $\left.a+2^{r-1}+1\right\}$, the decoder calculate the Levenshtein distance between \boldsymbol{y} and those codewords.

Odd coefficient code (1: Remarks)

$$
\begin{aligned}
O_{a}(n, r) & :=\left\{\boldsymbol{x} \in\{0,1\}^{n} \mid \sum_{i=1}^{n}(2 i-1) x_{i} \equiv a \quad(\bmod 2 r)\right\} \\
& =\left\{\boldsymbol{x} \mid x_{1}+3 x_{2}+5 x_{3}+7 x_{4}+\cdots \equiv a \quad(\bmod 2 r)\right\}
\end{aligned}
$$

(Examples)
$O_{a}(n, 3):=\left\{\boldsymbol{x} \mid x_{1}+3 x_{2}+5 x_{3}+x_{4}+3 x_{5}+5 x_{6}+\cdots \equiv a \quad(\bmod 6)\right\}$
$O_{a}(n, 4):=\left\{\boldsymbol{x} \mid x_{1}+3 x_{2}+5 x_{3}+7 x_{4}+x_{5}+3 x_{6}+\cdots \equiv a \quad(\bmod 8)\right\}$
(Property)

$$
\sum_{i=1}^{n}(2 i-1) x_{i} \equiv a \quad(\bmod 2 r) \Rightarrow \sum_{i=1}^{n} x_{i} \equiv a \quad(\bmod 2)
$$

- Decoding algorithm for OC codes is similar one for SVT codes
(c.f.) SVT code

$$
\begin{array}{r}
\operatorname{SVT}_{a, b}(n, r)=\left\{\boldsymbol{x} \in\{0,1\}^{n} \mid \sum_{i=1}^{n} i x_{i} \equiv a \quad(\bmod r),\right. \\
\left.\sum_{i=1}^{n} x_{i} \equiv b \quad(\bmod 2)\right\}
\end{array}
$$

Odd coefficient code (2: Cardinality 1)

Proposition 2: cardinality of OC code
Assume $n=r s+k$ (s is quotient of $n \div r, k$ is reminder of $n \div r$)

$$
\begin{aligned}
\left|O_{a}(n, r)\right|=\frac{1}{2 r} & {\left[\sum_{d \mid r, d: \text { odd }} 2^{s r / d} \sum_{\boldsymbol{y} \in\{0,1\}^{k}} c_{d}\left(a-\left\langle\boldsymbol{m}_{2}, \boldsymbol{y}\right\rangle\right)\right.} \\
& \left.+\sum_{d \mid r, d: \text { even }} 2^{s r / d} \sum_{\boldsymbol{y} \in\{0,1\}^{k}} c_{2 d}\left(a-\left\langle\boldsymbol{m}_{2}, \boldsymbol{y}\right\rangle\right)\right]
\end{aligned}
$$

$\left\langle\boldsymbol{m}_{2}, \boldsymbol{y}\right\rangle:=\sum_{i=1}^{k}(2 i-1) y_{i}$

$$
c_{d}(a):=\phi(d) \frac{\mu(d /(a, d))}{\phi(d /(a, d))}
$$

$\phi(d)$: Euler's totient function, $\mu(d)$: Möbius function, (a, d) : maximum common divisor of a and d

Odd coefficient code (3: Cardinality 2)

Proposition 3: Cardinality of SVT code

Assume $n=r s+k$ (s is quotient of $n \div r, k$ is reminder of $n \div r$)

$$
\left|\operatorname{SVT}_{a, b}(n, r)\right|=\frac{1}{2 r} \sum_{d \mid r, d: \text { odd }} 2^{s r / d} \sum_{\boldsymbol{y} \in\{0,1\}^{k}} c_{d}\left(a-\left\langle\boldsymbol{m}_{1}, \boldsymbol{y}\right\rangle\right)
$$

$\left\langle\boldsymbol{m}_{1}, \boldsymbol{y}\right\rangle:=\sum_{i=1}^{k} i y_{i}$
Proposition 2 and 3 are derived from [Bibak2018]

Odd coefficient code (4: Cardinality 3)

In particular, for $n=r s$

$$
\begin{aligned}
\left|O_{a}(n, r)\right| & =\frac{1}{2 r} \sum_{d \mid r, d: \text { odd }} c_{d}(a) 2^{n / d}+\frac{1}{2 r} \sum_{d \mid r, d: \text { even }} c_{2 d}(a) 2^{n / d} \\
\left|\mathrm{SVT}_{a, b}(n, r)\right| & =\frac{1}{2 r} \sum_{d \mid r, d: \text { odd }} c_{d}(a) 2^{n / d}
\end{aligned}
$$

The maximum achives at $a=0$:

$$
\begin{aligned}
\left|O_{0}(n, r)\right| & =\frac{1}{2 r} \sum_{d \mid r, d: \text { odd }} c_{d}(0) 2^{n / d}+\frac{1}{2 r} \sum_{d \mid r, d: \text { even }} c_{2 d}(0) 2^{n / d} \\
\left|\mathrm{SVT}_{0, b}(n, r)\right| & =\frac{1}{2 r} \sum_{d \mid r, d: \text { odd }} c_{d}(0) 2^{n / d}
\end{aligned}
$$

If r is even, max $\left|O_{a}(n, r)\right|>\max \left|\operatorname{SVT}_{a, b}(n, r)\right|$
If r is odd, max $\left|O_{a}(n, r)\right|=\max \left|\operatorname{SVT}_{a, b}(n, r)\right|$

Odd coefficient code (5: Decoding algorithm 1)

Input: Received word $\boldsymbol{y}=\left(y_{1}, y_{2}, \ldots, y_{n-1}\right)$, Deletion range $[s, s+r-1$] Output: Estimate word $\hat{\boldsymbol{x}}=\left(\hat{x}_{1}, \hat{x}_{2}, \ldots, \hat{x}_{n}\right) \in O_{a}(n, r)$

Since the decoder knows deletion range,

$$
\hat{\boldsymbol{x}}_{[1, s-1]}=\boldsymbol{y}_{[1, s-1]}, \quad \hat{\boldsymbol{x}}_{[s+r, n]}=\boldsymbol{y}_{[s+r-1, n-1]}
$$

$$
\begin{aligned}
& \left(x_{1}, x_{2}, \ldots, x_{s-1}, x_{s}, x_{s+1}, \ldots, x_{s+r-1}, x_{s+r} \quad, \ldots, x_{n}\right) \\
= & \left(y_{1}, y_{2}, \ldots, y_{s-1}, d, y_{s} \quad, \ldots, y_{s+r-2}, y_{s+r-1}, \ldots, y_{n-1}\right) \text { or } \\
= & \left(y_{1}, y_{2}, \ldots, y_{s-1}, y_{s}, d \quad, \ldots, y_{s+r-2}, y_{s+r-1}, \ldots, y_{n-1}\right) \text { or... } \\
= & \left(y_{1}, y_{2}, \ldots, y_{s-1}, y_{s}, y_{s+1}, \ldots, d \quad, y_{s+r-1}, \ldots, y_{n-1}\right)
\end{aligned}
$$

Hence, we consider the decoding algorithm for the following code

$$
O_{b, s}(r)=\left\{\left(x_{s}, x_{s+1}, \ldots, x_{s+r-1}\right) \mid \sum_{i=s}^{s+r-1}(2 i-1) x_{i} \equiv b \quad(\bmod 2 r)\right\}
$$

Odd coefficient code (6: Decoding algorithm 2)

$$
O_{b, s}(r)=\left\{\left(x_{s}, x_{s+1}, \ldots, x_{s+r-1}\right) \mid \sum_{i=s}^{s+r-1}(2 i-1) x_{i} \equiv b \quad(\bmod 2 r)\right\}
$$

Similar to the decoding algorithm for SVT code
Require: Received sequence \boldsymbol{y}, code parameters (a, k, r)
Ensure: Estimated sequence $\hat{\boldsymbol{x}}$
1: Calculate $w=\mathrm{h}_{\mathrm{w}}(\boldsymbol{y})$ and $b=\sum_{i=1}^{r-1}(2 i+2 k-3) y_{i}$
2: Set $\lambda=\operatorname{rem}(a-w, 2)$
3: if $\lambda=0$ then
4: Calculate $R_{1}=\operatorname{rem}(a-b, 2 r) / 2$
5: \quad Search p such that $\mathrm{h}_{\mathrm{w}}\left(\boldsymbol{y}_{[p, r-1]}\right)=R_{1}$
6: \quad Output $\hat{\boldsymbol{x}}=\boldsymbol{y}_{\vdash(p, 0)}$
7: else
8: \quad Calculate $L_{0}=\operatorname{rem}(a-b+1-2(k+w), 2 r) / 2$
9: \quad Search p such that $\left|\left\{i \in[1, p] \mid y_{i}=0\right\}\right|=L_{0}$
10: \quad Output $\hat{\boldsymbol{x}}=\boldsymbol{y}_{\vdash(p+1,1)}$
11: end if

Comparison of cardinalities

r	2	3	4	5	6
$\max _{a, b}\left\|\mathrm{SVT}_{a, b}(10, r)\right\|$	256	172	128	104	86
$\max _{a}\left\|E_{a}(10, r)\right\|$	342	205	114	61	32
$\max _{a}\left\|O_{a}(10, r)\right\|$	272	172	136	104	91
$\max _{a, b}\left\|\mathrm{SVT}_{a, b}(11, r)\right\|$	512	344	256	206	172
$\max _{a}\left\|E_{a}(11, r)\right\|$	683	410	228	121	63
$\max _{a}\left\|O_{a}(11, r)\right\|$	528	344	266	206	178

- EC codes have largest cardinalities for $r \leq 3$
- OC codes have largest cardinalities for $r \geq 4$
- If r is even, $\max \left|\operatorname{SVT}_{a, b}(n, r)\right|<\max \left|O_{a}(n, r)\right|$
- If r is odd, max $\left|\operatorname{SVT}_{a, b}(n, r)\right|=\max \left|O_{a}(n, r)\right|$

Conclusion

■ Construct r-bounded SIDC codes with larger cardinalities

- Exponential coefficient (EC) code
- Odd coefficient (OC) code

■ Evaluate the cardinalities

- If $r \leq 3$, EC codes have largest cardinalities
- If $r \geq 4$, OC codes have largest cardinalities
(Construction 1) Exponential coefficient code

$$
E_{a}(n, r):=\left\{\boldsymbol{x} \in\{0,1\}^{n} \mid \sum_{i=1}^{n} 2^{i-1} x_{i} \equiv a \quad\left(\bmod 2^{r-1}+1\right)\right\}
$$

(Construction 2) Odd coefficient code

$$
O_{a}(n, r):=\left\{\boldsymbol{x} \in\{0,1\}^{n} \mid \sum_{i=1}^{n}(2 i-1) x_{i} \equiv a \quad(\bmod 2 r)\right\}
$$

