Rate-Optimal Streaming Codes over Small Finite Fields for Burst/Random Erasure Channels

Takayuki Nozaki
Yamaguchi University
June 27th, 2023
ISIT2023

Introduction

Low latency and reliable packet communications are required in various applications.

- Vehicle-to-Vehicle communication

■ Real-time applications

Introduction

Low latency and reliable packet communications are required in various applications.

- Vehicle-to-Vehicle communication

■ Real-time applications
A solution for this problem is streaming code
Streaming code [Martinian-Sundberg-2004]
Erasure correcting code satisfying decoding delay constraint

Topic of this talk

Construction of streaming codes

Channel Model

(a, b, w)-sliding window erasure (SWE) channel
Packet erasure channel with random and burst erasures

- w : width of window

■ Each window contains $\leq a$ random erasures or a burst erasure of length $\leq b$

Example of Erasure Pattern: $a=2, b=4, w=5$
Transmitted Packets

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline \boldsymbol{x}_{1} & \boldsymbol{x}_{2} & \boldsymbol{x}_{3} & \boldsymbol{x}_{4} & \boldsymbol{x}_{5} & \boldsymbol{x}_{6} & \boldsymbol{x}_{7} & \boldsymbol{x}_{8} & \boldsymbol{x}_{9} & \boldsymbol{x}_{10} \\
\hline
\end{array}
$$

Received Packets

Burst erasure of length 4

Channel Model

(a, b, w)-sliding window erasure (SWE) channel
Packet erasure channel with random and burst erasures

- w : width of window

■ Each window contains $\leq a$ random erasures or a burst erasure of length $\leq b$

Example of Erasure Pattern: $a=2, b=4, w=5$
Transmitted Packets

	\boldsymbol{x}_{1}	\boldsymbol{x}_{2}	\boldsymbol{x}_{3}	\boldsymbol{x}_{4}	\boldsymbol{x}_{5}	\boldsymbol{x}_{6}	\boldsymbol{x}_{7}	\boldsymbol{x}_{8}	\boldsymbol{x}_{9}	\boldsymbol{x}_{10}

Received Packets

Channel Model

(a, b, w)-sliding window erasure (SWE) channel
Packet erasure channel with random and burst erasures

- w : width of window

■ Each window contains $\leq a$ random erasures or a burst erasure of length $\leq b$

Example of Erasure Pattern: $a=2, b=4, w=5$
Transmitted Packets

	\boldsymbol{x}_{1}	\boldsymbol{x}_{2}	\boldsymbol{x}_{3}	\boldsymbol{x}_{4}	\boldsymbol{x}_{5}	\boldsymbol{x}_{6}	\boldsymbol{x}_{7}	\boldsymbol{x}_{8}	\boldsymbol{x}_{9}	\boldsymbol{x}_{10}

Received Packets

Channel Model

(a, b, w)-sliding window erasure (SWE) channel
Packet erasure channel with random and burst erasures

- w : width of window

■ Each window contains $\leq a$ random erasures or a burst erasure of length $\leq b$

Example of Erasure Pattern: $a=2, b=4, w=5$
Transmitted Packets

	\boldsymbol{x}_{1}	\boldsymbol{x}_{2}	\boldsymbol{x}_{3}	\boldsymbol{x}_{4}	\boldsymbol{x}_{5}	\boldsymbol{x}_{6}	\boldsymbol{x}_{7}	\boldsymbol{x}_{8}	\boldsymbol{x}_{9}	\boldsymbol{x}_{10}

Received Packets

Channel Model

(a, b, w)-sliding window erasure (SWE) channel
Packet erasure channel with random and burst erasures

- w : width of window

■ Each window contains $\leq a$ random erasures or a burst erasure of length $\leq b$

Example of Erasure Pattern: $a=2, b=4, w=5$
Transmitted Packets

	\boldsymbol{x}_{1}	\boldsymbol{x}_{2}	\boldsymbol{x}_{3}	\boldsymbol{x}_{4}	\boldsymbol{x}_{5}	\boldsymbol{x}_{6}	\boldsymbol{x}_{7}	\boldsymbol{x}_{8}	\boldsymbol{x}_{9}	\boldsymbol{x}_{10}

Received Packets

Channel Model

(a, b, w)-sliding window erasure (SWE) channel
Packet erasure channel with random and burst erasures

- w : width of window

■ Each window contains $\leq a$ random erasures or a burst erasure of length $\leq b$

Example of Erasure Pattern: $a=2, b=4, w=5$
Transmitted Packets

	\boldsymbol{x}_{1}	\boldsymbol{x}_{2}	\boldsymbol{x}_{3}	\boldsymbol{x}_{4}	\boldsymbol{x}_{5}	\boldsymbol{x}_{6}	\boldsymbol{x}_{7}	\boldsymbol{x}_{8}	\boldsymbol{x}_{9}	\boldsymbol{x}_{10}

Received Packets

Decoding Delay Constraint

Streaming codes impose the τ-decoding delay constraint on the decoder.
Packet \boldsymbol{x}_{i} must be recovered from received packets $\boldsymbol{y}_{1}, \boldsymbol{y}_{2}, \ldots, \boldsymbol{y}_{i+\tau}$
$(a, b, w ; \tau)$ delay-constrained sliding-window (DCSW) model

- ($a, b, w)$-SWE channel
- τ-decoding delay (DD) constraint

Optimal rate of streaming code for $(a, b, w ; \tau)$ DCSW model [Badr-2017] $\tau_{\text {eff }}:=\min \{w-1, \tau\}$

$$
R \leq \frac{\tau_{\mathrm{eff}}-a+1}{\tau_{\mathrm{eff}}-a+b+1}
$$

The streaming codes achieving this equality are called rate-optimal.
In this talk,
We construct rate-optimal streaming codes for $(a, b, w ; \tau)$ DCSW model.

Related Works

Rate Optimal Streaming Codes for $(a, b, w ; \tau)$ DCSW model

Paper	Order of GF	Condition of Parameter	Explicit
[Fong-2019]	$2\binom{\tau+1}{a}$	Arbitrary feasible param.	No
KKrishnan-2020]	$\bar{\tau}^{2}$	Arbitrary feasible param.	No
[Krishnan-2020]	$\bar{\tau}$	$b-a=1$	No
$[$ Krishnan-2020]	$\bar{\tau}$	$(\tau+a+1) \geq 2 b \geq 4 a$	Yes
$[$ Krishnan-2020]	$\overline{\left(\frac{a}{b} \tau\right)}$	$a\|b\|(\tau+1+b+a)$	Yes
$[$ Ramkumar-2020]	$\bar{\tau}$	$\operatorname{gcd}(b, \tau+1-a) \geq a$	Yes
[Ramkumar-2020]	$\bar{\tau}$	$[\tau+1 \geq a+b] \wedge[a \mid b]$	Yes
[Ramkumar-2020]	$\bar{\tau}$	$[\tau+1 \geq a+b] \wedge[a \mid(b+1)]$	Yes
[Domanovitz-2022]	$\bar{\tau}^{2}$	Arbitrary feasible param.	Yes
[Bhatnagar-2022]	$\bar{\tau}$	$\tau \geq w+b-a-1$	Yes
This work	$\bar{\tau}$	Arbitrary feasible param.	Yes

($\bar{\tau}$ represents the integer satisfying $\bar{\tau} \geq \tau$ and $\bar{\tau}=p^{m}$)

Constirubtion of This Work

■ The code construction in this work is influenced by [Krishman-2020] and [Domanovitz-2022].

- These constructions locally use the property of $\operatorname{GF}\left(\bar{\tau}^{2}\right)$ (Almost parts use the property of $\mathrm{GF}(\bar{\tau})$)

Contribution of this work

■ By designing parity check matrix,

- we give the explicit construction of the streaming code
- we give an efficient encoding algorithm for the code
- By using companion matrix, we reduce the order of finite field.

■ We give an efficient decoding algorithm for the code.

Settings of Parameters

In the $(a, b, w ; \tau)$ DCSW model, it is sufficient to consider only the case

- $a \leq b$
- $w=\tau+1$

Reasons:

- If $a>b$, the problem is reduced to the case $a=b$
(a : number of random erasures, b : length of burst erasure)
■ Optimal code for ($a, b, \tau+1 ; \tau$) DCSW model is also optimal for $w \neq \tau+1$ cases

Optimal rate of $(a, b, w ; \tau)$-DCSW model

$$
\frac{\tau_{\mathrm{eff}}-a+1}{\tau_{\mathrm{eff}}-a+b+1} \quad \tau_{\mathrm{eff}}:=\min \{w-1, \tau\}
$$

Sub-packet Division

$\boldsymbol{x}_{i} \in \mathbb{F}_{q}^{2 \ell}: i$ th transmitted packet $\left(q=2^{m}, q>\tau\right)$

Sub-packet Division

We divide each packet into two sub-packets

Parity Check Matrix of Proposed Code

Example: $a=5, b=8, \tau=13, w=14(\delta:=b-a)$

$$
\begin{aligned}
& \mathbf{J}=\left(\begin{array}{ll}
0 & 1 \\
1 & \beta
\end{array}\right), \quad \mathbf{I}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad \mathbf{O}=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) \\
& \text { where } \\
& \beta \in \mathbb{F}_{q} \backslash\left\{\gamma+\gamma^{-1} \mid \gamma \in \mathbb{F}_{q}^{*}\right\} .
\end{aligned}
$$

$f(x):=x^{2}+\beta x+1$ is an irreducible polynomial over \mathbb{F}_{q}
J is the companion matrix of $f(x)$

Parity Check Matrix of Proposed Code

$$
\text { Example: } a=5, b=8, \tau=13, w=14(\delta:=b-a)
$$

Note: Any $t \times t$ sub-matrix of Cauchy matrix \mathbf{C} is non-singular

$$
\mathbf{C} \otimes \mathbf{I}=\left(\begin{array}{cccc}
c_{1,1} \mathbf{I} & c_{1,2} \mathbf{I} & \cdots & c_{1, \tau+a+1} \mathbf{I} \\
c_{2,1} \mathbf{I} & c_{2,2} \mathbf{I} & \cdots & c_{2, \tau+a+1} \mathbf{I} \\
\vdots & \vdots & \ddots & \vdots \\
c_{a, 1} \mathbf{I} & c_{a, 2} \mathbf{I} & \cdots & c_{a, \tau+a+1} \mathbf{I}
\end{array}\right)
$$

Parity Check Matrix of Proposed Code

$$
\text { Example: } a=5, b=8, \tau=13, w=14(\delta:=b-a)
$$

H satisfies optimal rate code length $n:=\tau-a+b+1$, dimension $k:=n-b=\tau-a+1$

Optimal rate of DCSW model

$$
\frac{\tau_{\text {eff }}-a+1}{\tau_{\text {eff }}-a+b+1} \quad \tau_{\text {eff }}:=\min \{w-1, \tau\}
$$

Encoding Algorithm for Proposed Code

Decide parity packets $\boldsymbol{p}_{1}, \boldsymbol{p}_{2}, \ldots, \boldsymbol{p}_{b}$ from source packets $\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{k}$

$$
\mathbf{H}\binom{\mathbf{U}}{\mathbf{P}}=\mathbf{O}_{2 n \times \ell} .
$$

$$
\mathbf{U}=\left(\begin{array}{c}
\boldsymbol{u}_{1, \mathrm{~L}} \\
\boldsymbol{u}_{1, \mathrm{R}} \\
\boldsymbol{u}_{2, \mathrm{~L}} \\
\boldsymbol{u}_{2, \mathrm{R}} \\
\vdots \\
\boldsymbol{u}_{k, \mathrm{~L}} \\
\boldsymbol{u}_{k, \mathrm{R}}
\end{array}\right), \quad \mathbf{P}=\left(\begin{array}{c}
\boldsymbol{p}_{1, \mathrm{~L}} \\
\boldsymbol{p}_{1, \mathrm{R}} \\
\boldsymbol{p}_{2, \mathrm{~L}} \\
\boldsymbol{p}_{2, \mathrm{R}} \\
\vdots \\
\boldsymbol{p}_{b, \mathrm{~L}} \\
\boldsymbol{p}_{b, \mathrm{R}}
\end{array}\right)
$$

Encoding Algorithm for Proposed Code

$$
\text { Example: } a=5, b=8, \tau=13, w=14
$$

[Note] There are no effect of sub-packet division to the lower a rows
(1) Generate $\boldsymbol{p}_{1}, \boldsymbol{p}_{2}, \boldsymbol{p}_{3}, \boldsymbol{p}_{4} \quad \boldsymbol{p}_{i}=\sum_{j=1}^{9} c_{i+1, j} \boldsymbol{u}_{j}$
(2) Generate $\boldsymbol{p}_{5}, \boldsymbol{p}_{6}, \boldsymbol{p}_{7} \quad\binom{\boldsymbol{p}_{5, \mathrm{~L}}}{\boldsymbol{p}_{5, \mathrm{R}}}=\binom{\boldsymbol{u}_{1, \mathrm{~L}}}{\boldsymbol{u}_{1, \mathrm{R}}}+\left(\begin{array}{ll}\beta & 1 \\ 1 & 0\end{array}\right)\binom{\boldsymbol{u}_{9, \mathrm{~L}}}{\boldsymbol{u}_{9, \mathrm{R}}}$
(3) Generate $\boldsymbol{p}_{8} \quad \boldsymbol{p}_{8}=\sum_{j=1}^{9} c_{1, j} \boldsymbol{u}_{j}+\boldsymbol{p}_{5}$

Examples of Decoding for Proposed Code (Burst 1)

Example: $a=5, b=8, \tau=13, w=14$ (Burst erasure in 1-8)

Decoding of x_{1} :

- From the property of SWE channel, $\boldsymbol{x}_{9}, \boldsymbol{x}_{10}, \ldots, \boldsymbol{x}_{14}$ are correctly received (!)
- By the τ-DD constraint, $\boldsymbol{x}_{15}, \boldsymbol{x}_{16}, \boldsymbol{x}_{17}$ have not been received $(-)$

From constraint of 1st row $\quad\binom{\boldsymbol{x}_{1, \mathrm{~L}}}{\boldsymbol{x}_{1, \mathrm{R}}}=\mathbf{J}^{-1}\binom{\boldsymbol{x}_{9, \mathrm{~L}}}{\boldsymbol{x}_{9, \mathrm{R}}}+\binom{\boldsymbol{x}_{14, \mathrm{~L}}}{\boldsymbol{x}_{14, \mathrm{R}}}$

Examples of Decoding for Proposed Code (Burst 1)

Example: $a=5, b=8, \tau=13, w=14$ (Burst erasure in 1-8)

Decoding of x_{2} :

- From the property of SWE channel, $\boldsymbol{x}_{9}, \boldsymbol{x}_{10}, \ldots, \boldsymbol{x}_{15}$ are correctly received (!)
- By the τ-DD constraint, $\boldsymbol{x}_{16}, \boldsymbol{x}_{17}$ have not been received $(-)$

From constraint of 2nd row $\quad\binom{\boldsymbol{x}_{2, \mathrm{~L}}}{\boldsymbol{x}_{2, \mathrm{R}}}=\mathbf{J}^{-1}\binom{\boldsymbol{x}_{10, \mathrm{~L}}}{\boldsymbol{x}_{10, \mathrm{R}}}+\binom{\boldsymbol{x}_{15, \mathrm{~L}}}{\boldsymbol{x}_{15, \mathrm{R}}}$

Examples of Decoding for Proposed Code (Burst 1)

Example: $a=5, b=8, \tau=13, w=14$ (Burst erasure in 1-8)

Decoding of x_{3} :
■ From the property of SWE channel, $\boldsymbol{x}_{9}, \boldsymbol{x}_{10}, \ldots, \boldsymbol{x}_{16}$ are correctly received (!)

- By the τ-DD constraint, \boldsymbol{x}_{17} have not been received (-)

From constraint of 3rd row $\quad\binom{\boldsymbol{x}_{3, \mathrm{~L}}}{\boldsymbol{x}_{3, \mathrm{R}}}=\mathbf{J}^{-1}\binom{\boldsymbol{x}_{11, \mathrm{~L}}}{\boldsymbol{x}_{11, \mathrm{R}}}+\binom{\boldsymbol{x}_{16, \mathrm{~L}}}{\boldsymbol{x}_{16, \mathrm{R}}}$

Examples of Decoding for Proposed Code (Burst 1)

Example: $a=5, b=8, \tau=13, w=14$ (Burst erasure in 1-8)

Decoding of $\boldsymbol{x}_{4}, \boldsymbol{x}_{5}, \ldots, \boldsymbol{x}_{8}$
■ From the property of SWE channel, $\boldsymbol{x}_{9}, \boldsymbol{x}_{10}, \ldots, \boldsymbol{x}_{17}$ are correctly received (!)

Since the light blue part is non-singular, these are recoverable

Examples of Decoding for Proposed Code (Burst 2)

Example: $a=5, b=8, \tau=13, w=14$ (Burst erasure in 3-10)

Decoding of $\boldsymbol{x}_{3}, \boldsymbol{x}_{9}, \boldsymbol{x}_{10}$:
■ From the property of SWE channel, $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \boldsymbol{x}_{11}, \boldsymbol{x}_{12}, \ldots, \boldsymbol{x}_{16}$ are correctly received (!)

- By the τ-DD constraint, \boldsymbol{x}_{17} has not been received (-)
- By constraint of the 3 rd row, recover \boldsymbol{x}_{3}
- By constraint of the 1 st row, recover \boldsymbol{x}_{9}
- By constraint of the 2 nd row, recover \boldsymbol{x}_{10}

Examples of Decoding for Proposed Code (Burst 2)

Example: $a=5, b=8, \tau=13, w=14$ (Burst erasure in $3-10$)

Decoding of $\boldsymbol{x}_{4}, \boldsymbol{x}_{5}, \ldots, \boldsymbol{x}_{8}$
■ From the property of SWE channel, \boldsymbol{x}_{17} is correctly received (!)

Since the light blue part is non-singular, these are recoverable

Examples of Decoding for Proposed Code (Burst 3)

Example: $a=5, b=8, \tau=13, w=14$ (Burst erasure in 9-16)

Examples of Decoding for Proposed Code (Burst 3)

Example: $a=5, b=8, \tau=13, w=14$ (Burst erasure in 9-16)

1 Light blue part is non-singular (Shown later) $\boldsymbol{x}_{9}, \boldsymbol{x}_{10}, \boldsymbol{x}_{11}, \boldsymbol{x}_{12}, \boldsymbol{x}_{13}$ are recoverable
2 From 2 nd and 3 rd rows, $\boldsymbol{x}_{14}, \boldsymbol{x}_{15}$ are recoverable

Principle of Decoding

Theorem 1

$$
\left(\begin{array}{c|ccc}
\mathbf{J}+a_{1,1} \mathbf{I} & a_{1,2} \mathbf{I} & \cdots & a_{1, t} \mathbf{I} \\
\hline a_{2,1} \mathbf{I} & a_{2,2} \mathbf{I} & \cdots & a_{2, t} \mathbf{I} \\
\vdots & \vdots & \ddots & \vdots \\
a_{t, 1} \mathbf{I} & a_{t, 2} \mathbf{I} & \cdots & a_{t, t} \mathbf{I}
\end{array}\right)
$$

is non-singular if and only if

$$
\left(\begin{array}{ccc}
a_{2,2} & \cdots & a_{2, t} \\
\vdots & \ddots & \vdots \\
a_{t, 2} & \cdots & a_{t, t}
\end{array}\right)
$$

is non-singular
[Note] Light blue part in the previous slide satisfies the condition

Examples of Decoding for Proposed Code (Random 1)

Example $a=5, b=8, \tau=13, w=14$

From Theorem 1, light blue part is non-singular

Examples of Decoding for Proposed Code (Random 2)

Example: $a=5, b=8, \tau=13, w=14$

1 By the lower 4 rows, recover except \boldsymbol{x}_{14}
2 By the 1st row, recover \boldsymbol{x}_{14}

Low-Complexity Decoding Algorithm

Decoding algorithm needs to solve \mathbf{X} of the following equation

Question: Can we efficiently solve the following equation? (In a naive algorithm, we need to use augmented matrix with $2 t$ rows)

$$
\left(\begin{array}{cccc}
\mathbf{J}+a_{1,1} \mathbf{I} & a_{1,2} \mathbf{I} & \cdots & a_{1, t} \mathbf{I} \\
a_{2,1} \mathbf{I} & a_{2,2} \mathbf{I} & \cdots & a_{2, t} \mathbf{I} \\
\vdots & \vdots & \ddots & \vdots \\
a_{t, 1} \mathbf{I} & a_{t, 2} \mathbf{I} & \cdots & a_{t, t} \mathbf{I}
\end{array}\right)\left(\begin{array}{c}
\boldsymbol{x}_{1, \mathrm{~L}} \\
\boldsymbol{x}_{1, \mathrm{R}} \\
\boldsymbol{x}_{2, \mathrm{~L}} \\
\boldsymbol{x}_{2, \mathrm{R}} \\
\vdots \\
\boldsymbol{x}_{t, \mathrm{~L}} \\
\boldsymbol{x}_{t, \mathrm{R}}
\end{array}\right)=\left(\begin{array}{c}
\boldsymbol{b}_{1, \mathrm{~L}} \\
\boldsymbol{b}_{1, \mathrm{R}} \\
\boldsymbol{b}_{2, \mathrm{~L}} \\
\boldsymbol{b}_{2, \mathrm{R}} \\
\vdots \\
\boldsymbol{b}_{t, \mathrm{~L}} \\
\boldsymbol{b}_{t, \mathrm{R}}
\end{array}\right)
$$

Low-Complexity Decoding Algorithm

Decoding algorithm needs to solve \mathbf{X} of the following equation
Question: Can we efficiently solve the following equation? (In a naive algorithm, we need to use augmented matrix with $2 t$ rows)

$$
\left(\begin{array}{cccc}
\mathbf{J}+a_{1,1} \mathbf{I} \mathbf{I} & a_{1,2} \mathbf{I} & \cdots & a_{1, t} \mathbf{I} \\
a_{2, \mathbf{1}} \mathbf{I} & a_{2,2} \mathbf{I} & \cdots & a_{2, t} \mathbf{I} \\
\vdots & \vdots & \ddots & \vdots \\
a_{t, 1} \mathbf{I} & a_{t, 2} \mathbf{I} & \cdots & a_{t, t} \mathbf{I}
\end{array}\right)\left(\begin{array}{c}
\boldsymbol{x}_{1, \mathrm{~L}} \\
\boldsymbol{x}_{1, \mathrm{R}} \\
\boldsymbol{x}_{2, \mathrm{~L}} \\
\boldsymbol{x}_{2, \mathrm{R}} \\
\vdots \\
\boldsymbol{x}_{t, \mathrm{~L}} \\
\boldsymbol{x}_{t, \mathrm{R}}
\end{array}\right)=\left(\begin{array}{c}
\boldsymbol{b}_{1, \mathrm{~L}} \\
\boldsymbol{b}_{1, \mathrm{R}} \\
\boldsymbol{b}_{2, \mathrm{~L}} \\
\boldsymbol{b}_{2, \mathrm{R}} \\
\vdots \\
\boldsymbol{b}_{t, \mathrm{~L}} \\
\boldsymbol{b}_{t, \mathrm{R}}
\end{array}\right)
$$

Answer: It can be solved like as the following problem (matrix of t rows)

$$
\left(\begin{array}{cccc}
a_{1,1} & a_{1,2} & \cdots & a_{1, t} \\
a_{2,1} & a_{2,2} & \cdots & a_{2, t} \\
\vdots & \vdots & \ddots & \vdots \\
a_{t, 1} & a_{t, 2} & \cdots & a_{t, t}
\end{array}\right)\left(\begin{array}{c}
\boldsymbol{x}_{1} \\
\boldsymbol{x}_{2} \\
\vdots \\
\boldsymbol{x}_{t}
\end{array}\right)=\left(\begin{array}{c}
\boldsymbol{b}_{\mathbf{1}} \\
\boldsymbol{b}_{2} \\
\vdots \\
\boldsymbol{b}_{t}
\end{array}\right)
$$

Low-Complexity Decoding Algorithm

1 Construct augmented matrix \mathbf{F}

$$
\mathbf{F}=\left(\begin{array}{cccc|cc}
a_{1,1} & a_{1,2} & \cdots & a_{1, t} & \boldsymbol{b}_{1, \mathrm{~L}} & \boldsymbol{b}_{1, \mathrm{R}} \\
a_{2,1} & a_{2,2} & \cdots & a_{2, t} & \boldsymbol{b}_{2, \mathrm{~L}} & \boldsymbol{b}_{2, \mathrm{R}} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
a_{t, 1} & a_{t, 2} & \cdots & a_{t, t} & \boldsymbol{b}_{t, \mathrm{~L}} & \boldsymbol{b}_{t, \mathrm{R}}
\end{array}\right) .
$$

2 (Forward Elimination) Apply elementary row operations to \mathbf{F}

$$
\left(\begin{array}{c|ccc|cc}
a_{1,1}^{\prime} & 0 & \cdots & 0 & \boldsymbol{b}_{1, \mathrm{~L}}^{\prime} & \boldsymbol{b}_{1, \mathrm{R}}^{\prime} \\
a_{2,1}^{\prime \prime} & & & & \boldsymbol{b}_{2, \mathrm{~L}}^{\prime} & \boldsymbol{b}_{2, \mathrm{R}}^{\prime} \\
\vdots & & \mathbf{I} & & \vdots & \\
a_{t, 1^{\prime}}^{\prime} & & & & \boldsymbol{b}_{t, \mathrm{~L}}^{\prime} & \boldsymbol{b}_{t, \mathrm{R}}^{\prime}
\end{array}\right) .
$$

3 Derive $\boldsymbol{x}_{1, \mathrm{~L}}, \boldsymbol{x}_{1, \mathrm{R}}$ as follows:

$$
\binom{\boldsymbol{x}_{1, \mathrm{~L}}}{\boldsymbol{x}_{1, \mathrm{R}}}=\left(f\left(a_{1,1}^{\prime}\right)\right)^{-1}\left(\begin{array}{cc}
\beta+a_{1,1}^{\prime} & 1 \\
1 & a_{1,1}^{\prime}
\end{array}\right)\binom{\boldsymbol{b}_{1, \mathrm{~L}}^{\prime}}{\boldsymbol{b}_{1, \mathrm{R}}^{\prime}} .
$$

4 (Backward Substitution) Derive $\boldsymbol{x}_{i, \mathrm{~L}}, \boldsymbol{x}_{i, \mathrm{R}}(i=2, \ldots, k)$ as follows:

$$
\left(\boldsymbol{x}_{i, \mathrm{~L}}, \boldsymbol{x}_{i, \mathrm{R}}\right)=\left(\boldsymbol{b}_{i, \mathrm{~L}}^{\prime}, \boldsymbol{b}_{i, \mathrm{R}}^{\prime}\right)+a_{i, 1}^{\prime}\left(\boldsymbol{x}_{1, \mathrm{~L}}, \boldsymbol{x}_{1, \mathrm{R}}\right)
$$

Conclusion

Construct streaming codes satisfying

- Rate-optimal

■ Over $\mathbb{F}_{\bar{\tau}}\left(\bar{\tau}>\tau\right.$ and $\left.\bar{\tau}=2^{m}\right)$

- Explicit construction

For this code,

- we give an encoding algorithm
- we give a decoding algorithm
- we reduce the complexity of sub-routine of decoding (Theorem 1)

