
Reduction of Decoding Iterations for Zigzag
Decodable Fountain Codes

Takayuki Nozaki

Yamaguchi University
This work is partially supported by JSPS KAKENHI Grant Number 16K16007

ISITA2016
Nov. 2nd, 2016

1 / 15



Outline

Fountain code

Rateless error correcting code for user diagram protocol (UDP)
(Applications) Multicasting, Broadcasting
(Examples) LT code, Raptor code, RaptorQ code ...

Previous work [Nozaki2014]

Proposing “Zigzag decodable (ZD) fountain code”
(Strength) Small overhead, Low decoding erasure rate
(Weakness) Large number of decoding iterations/time

Purpose of this research

Reduction of number of decoding iterations for ZD fountain code
(Result) Reducing decoding iterations without loss of decoding
performance

2 / 15



Outline

1 Fountain code and Raptor code

2 Encoding/Decoding for ZD fountain code

3 Investigation of number of iterations for conventional decoding
algorithm

4 Proposed decoding algorithm

5 Simulation results

3 / 15



Fountain code (1: Brief review)

[Encoder] generates many output packets from k source packets.
[Decoder] decodes source packets from any k(1 + α) received packets
⇒ Suitable for multicasting/broadcasting

k� -

Source packet s1 s2 · · · sk

Output packet x1 x2 · · · · · · · · · · · · · · · · · ·

Receiver A x1 x2 · · · · · · xk̃

Receiver B x3 x10 · · · · · · xk′

Receiver C x1234 x1236 · · · · · · xk′′
� -

k̃ = k(1 + α)

Even if packet losses occur, receiver can recover source packets

4 / 15



Fountain Code (2: Raptor code)

Raptor code (C,Ω(x))
Encoding

1 Generate pre-coding packets from source packets by using precode C
2 Generate output packets from pre-coding packets by using LT code

Ω(x) =
∑

i Ωix
i

1 Choose degree d with probability Ωd

2 Choose distinct d pre-coding packets (sj1 , sj2 , . . . sjd)
3 The output packet is

∑d
i=1 sji

Decoding
Generate factor graph from received packets and C
Execute peeling algorithm (PA)

Output packets

Pre-coding packet

· · ·

Pre-code

5 / 15



ZD Fountain Code (1: Toy Example)

Encoding

Using XOR and bit-level shift for source packets

Source packet

Output packet

s1,1 s1,2 · · · s1,ℓ
s2,1 s2,2 · · · s2,ℓ

x1,1 x1,2 · · · x1,ℓ

s1,1 s1,2 · · · s1,ℓ
s2,1 · · · s2,ℓ−1 s2,ℓ

x2,1 x2,2 · · · x2,ℓ x2,ℓ+1

Decoding: Bit-wise peeling algorithm (Zigzag decoding)

Recover source packets in bit-wise

1 s1,1 = x2,1

2 s2,1 = x1,1 − s1,1

3 s1,2 = x2,2 − s2,1

6 / 15



Zigzag Decodable Fountain Code (2: Encoding)

ZD Fountain Code (C,Ω(x),∆(x))

1 Generate pre-coding packets (a1,a2, . . . ,an) from source packets
(s1, s2, . . . , sk) by using precode C

2 Generate an output packet as follows:
1 Choose degree d of an output packet with probability Ωd

2 Choose d distinct precoded packets. Denote those indexes of packets
by (j1, j2, . . . , jd).

3 Choose d-tuple of shift amount (δ1, δ2, . . . , δd) according to

∆(x) =
∑D

i=0 ∆ix
i

4 Send the following output packet∑d
i=1 z

δiaji(z),

Polynomial representation of a packet
aj(z) = aj,1 + aj,2z + aj,3z

3 + · · ·+ aj,ℓz
ℓ−1

a1(z) + za2(z) = a1,1 + a1,2z + a1,3z
3 + · · ·+ a1,ℓz

ℓ−1

+ a2,1z + a2,2z
3 + · · ·+ a2,ℓ−1z

ℓ−1 + a2,ℓz
ℓ

7 / 15



Zigzag Decodable Fountain Code (3: Decoding)

Conventional Decoding Algorithm

1 Construct factor graph in packet-wise representation
from precode C and received packets (r1, r2, . . . , rk′)

2 (Packet-wise PA) Peeling algorithm over the factor graph
3 IF residual graph is empty, decoding succeeds and halts.

Otherwise go to next step.
4 Transform the residual graph into bit-wise representation
5 (Bit-wise PA) Peeling algorithm over the bit-wise factor graph

1 z 1 1 1z 1

⇒

1 z

⇒

8 / 15



Performance Comparison (Raptor vs ZD Fountain)

10-3

10-2

10-1

100

 0  0.1  0.2  0.3  0.4  0.5

D
ec

od
in

g 
E

ra
su

re
 R

at
e

Overhead

(0,900)
(0,1800)
(0,3600)
(3,900)

(3,1800)
(3,3600)

Red: Raptor code,
Purple: ZD Fountain code
k = 900, 1800, 3600

Decoding time [sec] (α = 0.12)
Raptor ZD Fountain

ℓ = 100 0.17039 0.43909

ℓ = 1000 0.17039 14.0874

Strength and Weakness of ZD fountain code

Strength: Small overhead and small decoding erasure rate
Weakness: Large decoding time

9 / 15



Goal and Strategy of Research

(Goal of Research): reduction of number of decoding iterations without
loss of decoding performance
(From simulation result)
Decoding iterations are mainly caused by bit-wise decoding
⇒ The source packets are mainly recovered by bit-wise decoding
Strategy of Research: Using a powerful decoding algorithm for packet-wise
decoding.
(Decreasing the iterations of bit-wise decoding)

101

102

103

104

105

100 101 102

It
er

at
io

ns
 o

f 
Z

D

Iterations of PA

success
failure

The number of iterations under
pPA+bPA
(ℓ = 1000, α = 0.07)

10 / 15



Decoding Algorithms for LDPC Codes over BEC

Decoding algorithms works upon factor graphs

PA (Peeling Algorithm) [Luby et al. 1997]

Decoding starts from check nodes of degree 1

Low complexity, Low decoding performance

TEP (Tree-structure Expectation Propagation) [Olmos et al. 2010]

Decoding starts from check nodes of degree 1 and 2

Moderate complexity, Moderate decoding performance

G-TEP (Generalized TEP) [Salamanca et al. 2013]

Decoding starts from check nodes of any degree

Equivalent to MAP decoding (i.e, Gaussian elimination)

High complexity, High decoding performance

11 / 15



Proposed Algorithm

Applying TEP decoding algorithm for the packet-wise decoding of ZD
fountain code (packet-wise TEP + bit-wise PA)

1 Initialize the residual graph G by the Tanner graph corresponding to H. Initialize all the memory as si ← 0
(i ∈ [1,m]) and the iteration round τ as 1. For j ∈ [1, n] s.t. yj ̸= ∗, update the memory in the check node ci
(i ∈ Nv(j)) as si ← si + yj and remove the j-th variable node and its connecting edges from G. Additionally, set
F ← {}.

2 For i ∈ [1,m], execute the following processes;

1 If the i-th check node is degree 1 in G, execute the following For i ∈ [1,m], if the i-th check node is degree 1
in G, then the algorithm executes the following; Let j be the index of the adjacent variable node. The j-th

variable node sets bj(z)← ℓ−1
i,j si(z) and send bj(z) to all the adjacent check nodes. For k ∈ Nv(j), the

check node ck updates the memory as sk(z)← sk(z) + ℓk,jbj(z). Remove the variable node vj and its
connecting edges from G.

2 If the i-th check node is degree 2 in G, execute the followings. Let j, j′ be the indexes of the adjacent variable
nodes. Assume that the degree of the j-th variable node is less than or equal to that of j′-th variable node. For
all t ∈ Nv(j) \ {i}, let gt be the greatest common divisor of li.j and lt,j and change the labels and
memory as follows:

mt(z)← [li,jmt(z) + lt,jmi(z)]/gt,

lt,j ← 0,

l
t,j̃
← li,j lt,j̃/gt ∀j̃ ∈ Nc(t) \ {j},

lt,j′ ← lt,j′ + lt,j li,j′/gt.

Moreover, set F ← F ∪ {i}.

3 If there exist some check nodes of degree 1 or 2 in G, set τ ← τ + 1 and go to Step 2. Otherwise, output the

decoding result b1(z), . . . , bn(z), the residual graph G and memory values s1(z), . . . , sm′ (z). 12 / 15



Simulation Results (1: Average Number of Iteration)

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000

 0.06  0.08  0.1  0.12  0.14  0.16

A
ve

ra
ge

 n
um

be
r 

of
 it

er
at

io
ns

Overhead

 pPA+bPA
pTEP+bPA

ℓ = 1000

13 / 15



Simulation Results (2: Decoding Performance)

10-6

10-5

10-4

10-3

10-2

10-1

100

 0  0.05  0.1  0.15  0.2

D
ec

od
in

g 
er

as
ur

e 
ra

te

Overhead

PA
TEP

PA+ZD (D=1)
TEP+ZD (D=1)

Decoding performance ( ℓ = 1000)

There are no degradation of decoding performance.

14 / 15



Conclusion and Future Works

Conclusion

We propose a decoding algorithm for ZD fountain code

Small number of iterations

No degradation of decoding performance

Future works

Optimization of degree distribution Ω(x) and shift distribution ∆(x)

Comparison of MAP threshold and PA threshold for ZD fountain code

15 / 15



Simulation Results (3: Details of Decoding Iterations)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0  20  40  60  80  100

C
um

ul
at

iv
e 

re
la

tiv
e 

fr
eq

ue
nc

y

Number of iterations

 pPA+bPA
pTEP+bPA

The number of iterations for
packet-wise decoding

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0  500  1000  1500  2000  2500  3000

C
um

ul
at

iv
e 

re
la

tiv
e 

fr
eq

ue
nc

y

Number of iterations

 pPA+bPA
pTEP+pPA

The number of iterations for
bit-wise decoding

ℓ = 1000, α = 0.12

We reduce the total number of decoding iteration

The number of packet-wise decoding is increasing (5 iterations)

The number of bit-wise decoding is decreasing (600 iterations)

15 / 15



Simulation Results (4: Decoding Time)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0.1  0.11  0.12  0.13  0.14  0.15

D
ec

od
in

g 
tim

e 
[s

ec
]

Overhead

 PA
 PA+ZD
TEP+ZD

Time of decoding ( ℓ = 1000)

We can reduce the latency of decoding

15 / 15


