An Improvement of Non-binary Code Correcting Single b-Burst of Insertions or Deletions

Toyohiko Saeki, Takayuki Nozaki

Yamaguchi University

ISITA2018

Oct. 29th, 2018

Background (1: Purpose)

b-burst insertion/deletion channel
Exactly b consecutive insertions/deletions occurs to \boldsymbol{x}
Example: 3-burst deletion

$$
\begin{aligned}
& \boldsymbol{x}=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}, x_{10}, x_{11}, x_{12}\right) \\
& \boldsymbol{y}=\left(y_{1}, y_{2}, y_{3}, y_{4}, y_{5}, y_{6}, y_{7}, y_{8}, y_{9}\right)
\end{aligned}
$$

Received word \boldsymbol{y} becomes the concatenation of remaining sequence
Purpose of this research
Constructing non-binary (q-ary) code correcting b-burst insertion/deletion

Background (2: Existing works, Contribution, Outline) Existing works of I/D codes

	Binary	Non-binary
Single I/D	VT code [Varshamov1965] (proved by [Levenshtein1966])	qVT code [Tenengolts1984]
Burst I/D	[Cheng2014]	
	\Downarrow Improve	
$[$ Schoney2017-04]	[Schoney2017-10]	
	\Downarrow Improve	

Contributions of this research

- Constructing non-binary burst I/D code with larger cardinality
- Devising decoding algorithm for the code

■ Evaluating number of codewords (Numerical and Asymptotic)

Outline

1 Existing works
2 Code construction
3 Number of Codewords

Existing Work (1: Single I/D codes)

VT code: Binary single I/D code
n : code length, $\quad a \in[n+1]:=\{0,1,2, \ldots, n\}$

$$
\operatorname{VT}_{a}(n)=\left\{\boldsymbol{x} \in\{0,1\}^{n} \mid \sum_{i=1}^{n} i x_{i} \equiv a \quad(\bmod n+1)\right\} .
$$

Non-binary VT code: non-binary single I/D code q : number of alphabet, $\quad a \in[n], c \in[q]$

$$
q \mathrm{VT}_{a, c}(n, q)=\left\{\boldsymbol{x} \in[q]^{n} \mid \sum_{i=1}^{n} x_{i} \equiv c \quad(\bmod q), \sigma(\boldsymbol{x}) \in \mathrm{VT}_{a}(n-1)\right\} .
$$

Ascent sequence $\sigma(x) \quad \sigma:[q]^{n} \rightarrow\{0,1\}^{n-1}$

$$
\sigma(\boldsymbol{x})_{i}= \begin{cases}1 & \left(x_{i}<x_{i+1}\right) \\ 0 & \left(x_{i} \geq x_{i+1}\right)\end{cases}
$$

$$
\begin{aligned}
\boldsymbol{x} & =30133212 \\
\sigma(\boldsymbol{x}) & =0110001 \quad \text { ascent sequence }
\end{aligned}
$$

Existing Work (2: Burst I/D codes 1)

b-Interleave (Matrix representation of x)

$$
A_{b}(\boldsymbol{x})=\left(\begin{array}{cccc}
x_{1} & x_{b+1} & \cdots & x_{n-b+1} \\
x_{2} & x_{b+2} & \cdots & x_{n-b+2} \\
\vdots & \vdots & \ddots & \vdots \\
x_{b} & x_{2 b} & \cdots & x_{n}
\end{array}\right)
$$

Example: 3-interleaving $\boldsymbol{x}=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}, x_{10}, x_{11}, x_{12}\right)$

$$
A_{3}(\boldsymbol{x})=\left(\begin{array}{llll}
x_{1} & x_{4} & x_{7} & x_{10} \\
x_{2} & x_{5} & x_{8} & x_{11} \\
x_{3} & x_{6} & x_{9} & x_{12}
\end{array}\right)
$$

- Each row contains single deletion
- The deletion position of 1st row gives deletion range of other rows

Existing Work (3: Burst I/D codes 2)

Detection of Deletion Position:

Even if we correct a deletion, we cannot detect deletion position

$$
\begin{aligned}
\boldsymbol{x} & =(1,0,0,1,1,1) \\
\boldsymbol{x}_{\neg 2} & =(1 \quad, 0,1,1,1) \\
\boldsymbol{x}_{\neg 3} & =(1,0 \quad, 1,1,1)
\end{aligned}
$$

The received words are same if a deletion occurs in a same run.
One cannot detect which symbol in a run is deleted

$$
A_{b}(x)=\left(\begin{array}{ccccccccccc}
\cdots & \cdots & 1 & 0 & 0 & \cdots & 0 & 1 & \cdots & \cdots \\
\cdots & \cdots & * & * & * & \cdots & * & * & \cdots & \cdots \\
\vdots & \vdots & & & & \vdots & & & \vdots & \vdots \\
\cdots & \cdots & * & * & * & \cdots & * & * & \cdots & \cdots
\end{array}\right)
$$

■ We need to limit the run length of 1st row
■ We use a code correcting single deletion with given deletion range

Existing Work (4: Burst I/D codes 3)

Framework of b-burst deletion correcting code

$$
A_{b}(\boldsymbol{x})=\underbrace{\left(\begin{array}{c}
\text { Single I/D code with maximum run length } r \\
(r+1) \text {-bounded single deletion correcting code } \\
\vdots \\
(r+1) \text {-bounded single deletion correcting code }
\end{array}\right)}_{n / b}
$$

$(r+1)$-bounded single deletion correcting code
Correcting single deletion with side information of deletion position (Side information) ($r+1$)-consecutive deletion positions

Existing Work (5: Burst I/D codes 4)

b-burst I/D code [Schonery2017-04]

$$
\begin{gathered}
C_{2, b}=\left\{\boldsymbol{x} \in\{0,1\}^{n} \mid A_{b}(\boldsymbol{x})_{1} \in \operatorname{VT}_{a}(n / b) \cap S_{2}(n / b, r),\right. \\
A_{b}(\boldsymbol{x})_{2} \in \operatorname{SVT}_{d, e}(n / b, r+1), \\
\vdots \\
\left.A_{b}(\boldsymbol{x})_{b} \in \operatorname{SVT}_{d, e}(n / b, r+1)\right\}
\end{gathered}
$$

$S_{2}(n / b, r)$: set of binary sequence of length n / b with maximum run length at most r
Shifted VT (SVT) code
r-bounded single deletion code

$$
\begin{array}{r}
\operatorname{SVT}_{d, e}(n, r)=\left\{\boldsymbol{x} \in\{0,1\}^{n} \mid \sum_{i=1}^{n} i x_{i} \equiv d(\bmod r),\right. \\
\left.\sum_{i=1}^{n} x_{i} \equiv e \quad(\bmod 2)\right\}
\end{array}
$$

$d \in[r], e \in\{0,1\}$

Existing Work (6: Non-binary Burst I/D codes)

Non-binary SVT code

$$
\begin{array}{r}
q \mathrm{SVT}_{d, e, f}(n, r, q):=\left\{\boldsymbol{x} \in[q]^{n} \mid \sum_{i=1}^{n} x_{i} \equiv f \quad(\bmod q)\right. \\
\\
\left.\sigma(\boldsymbol{x}) \in \operatorname{SVT}_{d, e}(n-1, r)\right\}
\end{array}
$$

[Schoney2017-11, Lemma 1] Correction capability of NB-SVT code $q \mathrm{SVT}_{d, e, f}(n, r, q)$ is $(r-1)$-bounded single deletion correcting code

Non-binary b-burst I/D code [Schoney2017-11]

$$
\begin{gathered}
\check{C}_{q, b}=\left\{\boldsymbol{x} \in[q]^{n} \mid A_{b}(\boldsymbol{x})_{1} \in q \mathrm{VT}_{a, b}(n / b, q) \cap S_{q}(n / b, r),\right. \\
A_{b}(\boldsymbol{x})_{2} \in q \mathrm{SVT}_{d, e, f}(n / b, r+2, q), \\
\vdots \\
\left.A_{b}(\boldsymbol{x})_{b} \in q \mathrm{SVT}_{d, e, f}(n / b, r+2, q)\right\}
\end{gathered}
$$

Main Result

Non-binary SVT code

$$
\begin{aligned}
q \mathrm{SVT}_{d, e, f}(n, r, q):=\left\{\boldsymbol{x} \in[q]^{n} \mid\right. & \sum_{i=1}^{n} x_{i} \equiv f \quad(\bmod q) \\
& \left.\sigma(\boldsymbol{x}) \in \operatorname{SVT}_{d, e}(n-1, r)\right\}
\end{aligned}
$$

[Theorem 2] Correction capability of NB-SVT code

 $q \operatorname{SVT}_{d, e, f}(n, r, q)$ is $\quad r$-bounded single deletion correcting codeNon-binary b-burst I/D code [This work]

$$
\begin{gathered}
C_{q, b}=\left\{\boldsymbol{x} \in[q]^{n} \mid A_{b}(\boldsymbol{x})_{1} \in q \mathrm{VT}_{a, b}(n / b, q) \cap S_{q}(n / b, r),\right. \\
A_{b}(\boldsymbol{x})_{2} \in q \operatorname{SVT}_{d, e, f}(n / b, r+1, q), \\
\vdots \\
\left.A_{b}(\boldsymbol{x})_{b} \in q \operatorname{SVT}_{d, e, f}(n / b, r+1, q)\right\}
\end{gathered}
$$

(Proof of Theorem 2) Straightforward but long... See arXiv:1804.04824

Number of Codewords (1: Lower bound 1)

$$
\begin{aligned}
C_{q, b}=\left\{\boldsymbol{x} \in[q]^{n}\right. & \mid A_{b}(\boldsymbol{x})_{1} \in q \mathrm{VT}_{a, b}(n / b, q) \cap S_{q}(n / b, r), \\
& \left.A_{b}(\boldsymbol{x})_{i} \in q \mathrm{SVT}_{d, e, f}(n / b, r+1, q) \text { for } i \in[2, b]\right\}
\end{aligned}
$$

[Lemma 5] Lower bound of $\#$ of run length limited sequences

$$
\left|S_{n, q}(r)\right| \geq\left(q^{r}-n\right) q^{n-r} .
$$

[Lemma 6] Lower bound of $\left|A_{b}(\boldsymbol{x})_{1}\right|$

$\max _{a \in[n], c \in[q]}\left|q \mathrm{VT}_{a, c}(n / b, q) \cap S_{q}(n / b, r)\right| \geq \frac{\left(q^{r}-n\right) q^{n-r}}{n q}=\frac{\left(q^{r}-n\right) q^{n-r-1}}{n}$.
[Lemma 7] Lower bound of non-binary SVT code

$$
\max _{d \in[r+1], e \in[2], f \in[q]}\left|q \mathrm{SVT}_{d, e, f}(n, r+1, q)\right| \geq \frac{q^{n}}{2(r+1) q}=\frac{q^{n-1}}{2(r+1)} .
$$

Number of Codewords (2: Lower bound 2)

$$
\begin{aligned}
C_{q, b}=\left\{\boldsymbol{x} \in[q]^{n} \mid\right. & A_{b}(\boldsymbol{x})_{1} \in q \mathrm{VT}_{a, b}(n / b, q) \cap S_{2}(n / b, r) \\
& \left.A_{b}(\boldsymbol{x})_{i} \in q \operatorname{SVT}_{d, e, f}(n / b, r+1, q) \text { for } i \in[2, b]\right\}
\end{aligned}
$$

[Theorem 4] Lower bound of $\left|C_{q, b}\right|$
For all r, the cardinality of $C_{q, b}$ satisfies

$$
\max \left|C_{q, b}\right| \geq \frac{q^{n-b}}{n} \frac{b-n q^{-r}}{2^{b-1}(r+1)^{b-1}} .
$$

Substituting $r=\log _{q} n$, we get

$$
\max \left|C_{q, b}\right| \geq \frac{2 q^{n-b}}{n} \cdot \frac{b-1}{2^{b}\left(\log _{q} n+1\right)^{b-1}}
$$

Its redundancy (the number of extra symbols: $n-\log _{q}|C|$) is

$$
b+\log _{q} n-\log _{q}(b-1)+(b-1) \log _{q} 2+(b-1) \log _{q}\left(\log _{q} n+1\right)
$$

Number of Codewords (3: Upper bound of the best code) $M_{q, b}(n): q$-ary b-burst I/D code with largest cardinality

[Theorem 5]

For enough large n, the following holds:

$$
\left|M_{q, b}(n)\right| \leq \frac{q^{n-b+1}}{(q-1) n}
$$

Upper bound of redundancy for $M_{q, b}(n)$ is

$$
b-\log _{q} 2+\log _{q} n
$$

Gap of redundancy between $C_{q, b}$ and $M_{q, b}(n)$ is

$$
\begin{aligned}
& 1-\log _{q}(q-1)-\log _{q}(b-1)+(b-1) \log _{q} 2+(b-1) \log _{q}\left[\log _{q} n+1\right] \\
= & O\left(\log _{q} \log _{q} n\right)
\end{aligned}
$$

Fraction of gap of redundancy $O\left(\frac{\log _{q} \log _{q} n}{n}\right)$

Number of Codewords (4: Numerical Example)

$$
n=10, q=4
$$

The number of codewords decreases for small r
\Rightarrow For $r=\log _{q} n,\left|q \operatorname{SVT}_{d, e, f}(n, r, q)\right|>\left|q \operatorname{SVT}_{d, e, f}(n, r+1, q)\right|$
\Rightarrow The proposed code has larger cardinality than [Schoney2017-11]

Conclusion

- We construct non-binary b-burst I/D code
- We refine the correction capability of non-binary SVT code
- We devise its decoding algorithm
- We evaluate the cardinality of the code

