
Parallel Encoding Algorithm for LDPC Codes
Based on Block-Diagonalization

Takayuki Nozaki
Yamaguchi University, JAPAN

Email: tnozaki@yamaguchi-u.ac.jp

Abstract—In this paper, we propose an efficient parallel en-
coding algorithm for the low-density parity-check (LDPC) codes.
The main idea of the proposed encoding algorithm is the block-
diagonalization of the parity part of a given parity check matrix
by row and column permutation. The numerical examples in
this paper show that the proposed encoding algorithm efficiently
works in the multi-processor systems.

I. INTRODUCTION

Low-density parity-check (LDPC) codes, invented by Gal-
lager [1], are defined by sparse parity check matrices. Due to
the sparseness of the parity check matrices, LDPC codes are
decoded by the belief propagation (BP) algorithm, which is
a parallel decoding algorithm with complexity O(N), where
N is the code-length. On the other hand, LDPC codes are
encoded by its generator matrix with complexity O(N2). In
other words, the complexity of encoding is larger than that
of decoding for large code-length. Hence, it is important to
reduce the encoding complexity of the LDPC codes.

Richardson and Urbanke [2] proposed the first efficient
encoding algorithm, which is based on transforming the parity
check matrix into an approximate triangular matrix by row
and column permutation. This algorithm can encode the LDPC
codes with complexity O(N + δ2), where δ is proportional
to N and δ ≪ N , and is called gap. Kaji [3] proposed an
encoding algorithm based on LU-decomposition and showed
that the encoding algorithm outperforms Richardson and Ur-
banke’s (RU) encoding algorithm in terms of the complexity
for small δ. Recently, encoding algorithms based on block-
triangularization were proposed in [4], [5]. However, those
encoding algorithms [2], [3], [4], [5] are sequential algorithms.

In this paper, we propose an efficient parallel encoding
algorithm for the LDPC codes to reduce the time of encoding.
The main idea of the proposed encoding algorithm is the
block-diagonalization of the parity part of a given parity
check matrix by row and column permutation. By using the
block-diagonalization, encoding of LDPC codes comes down
to several small systems of linear equations. By parallelly
solving those small systems of linear equations, the proposed
parallel algorithm is realized. Moreover, rearranging row and
column of diagonal submatrices by the RU algorithm, those
small systems of linear equations are efficiently solved. The
numerical examples in this paper show that the proposed
encoding algorithm efficiently works in the multi-processor
systems.

The remainder of the paper is organized as follows. Section
II briefly reviews the general framework of encoding algorithm
for the LDPC codes and the RU encoding algorithm. Section
III introduces hypergraph representation for parity check ma-
trices and hypergraph partition problem. Those will be used for
transforming a given parity check matrix into a singly bordered
block-diagonal form. Section IV proposes a parallel encoding
algorithm. Section V shows some numerical examples of
the proposed algorithm and compares the complexity of the
proposed algorithm and the RU encoding algorithm.

II. PRELIMINARIES

This section briefly reviews a general framework of encod-
ing for LDPC codes and the RU encoding algorithm.

A. General Framework of Encoding for LDPC codes

In this section, we consider the general framework of the
encoding algorithm for the LDPC codes over the finite field Fq

of the order q. We assume that the M×N parity check matrix
H has full rank, i.e, rank(H) = M . For a given H, encoding
maps a message m of length N −M into a codeword x of
length N .

Encoding algorithms of LDPC codes are divided into two
steps, called precoding step and encoding step. In the pre-
coding step, the algorithm transforms the parity check matrix
H into a systematic form Hsys = (HP HI), where HP

is a M ×M non-singular matrix and called the parity part
of H and HI is called the information part of H. Similarly,

each codeword is partitioned as x =

(
p
m

)
, where p ∈ FM

q

(resp. m ∈ FN−M
q) is called the parity part (resp. information

part). Since Hx = 0 holds, we have HPp = −HIm. Hence,
in the encoding step, the algorithm generates codeword x
corresponding to the message m by solving HPp = −HIm.
To reduce the encoding complexity, HP should have some
form which can be efficiently solved.

To keep the decoding performance of an LDPC code and
the number of non-zero entries in its parity-check matrix H,
the precoding step transforms H only by row and column
permutation, i.e, by using two permutation matrices P and Q,
Hsys = PHQ. By summarizing above, the precoding step is
regarded as an algorithm finding two permutation matrices P
and Q such that HPp = −HIm is efficiently solved.

B. Richardson and Urbanke’s (RU) Encoding Algorithm
In this section, we briefly review the RU encoding al-

gorithm. In the precoding step, the RU encoding algorithm
transforms a given parity check matrix H into an approximate
triangular matrix (ATM), which is described as

HATM = PHQ =

(
T C HI

u

D E HI
l

)
, (1)

where HP =

(
T C
D E

)
, HI =

(
HI

u

HI
l

)
, T is an (M − δ) ×

(M − δ) upper triangular matrix, C,D,E,HI
u and HI

l are
(M − δ)× δ, δ × (M − δ), δ × δ, (M − δ)× (N −M) and
δ × (N −M) matrices, respectively.

Assume that the parity part of a codeword is partitioned as

p =

(
pu

pl

)
, where pu and pl are of length (M − δ) and δ,

respectively. Define Φ := (E−DT−1C). Then, the encoding
step is given as follows:

1) Derive pl from the following equation

pl = Φ−1(DT−1HI
u −HI

l)m.

2) Solve pu by using backward substitution of T

Tpu = −Cpl −HI
um.

Denote the number of non-zero elements in the matrix A,
by wt(A). Let Z(A) be the number of rows in A such that
there exists at least one non-zero element. Define S(A) :=
wt(A)−Z(A). The numbers of multiplication µ and addition
α of the encoding step of the RU algorithm are

µ = wt(HI) + 2wt(T) + wt(C) + wt(D) + wt(Φ−1), (2)
α = S(HI) + 2S(T) + S(C) + S(D) + S(Φ−1) +M, (3)

respectively.
Summarizing the above, the precoding step of the RU algo-

rithm is regarded as an algorithm, whose input is the original
parity check matrix H and output is a four-tuple of matrices
(HATM,P,Q,Φ−1). Hence, we denote the precoding step of
the RU algorithm, as ATM(H)→ (HATM,P,Q,Φ−1). This
notation will be used in Section IV-D.

III. HYPERGRAPH REPRESENTATION AND PARTITION
PROBLEM

This section defines hypergraphs and introduces the hyper-
graph representation of matrices [6, Section 3.2] and hyper-
graph partitioning problem.

A. Hypergraph Representation of Matrix
Definition 1 (Hypergraph): Let U be a finite set, and let

E be a family of non-empty subset of U . The pair (U , E) is
called hypergraph with the set of vertices U and the set of
nets (or hyperedges) E . If the i-th node ui ∈ U is in the j-th
net ej ∈ E , i.e, ui ∈ ej , we call ui connected to ej .

The hypergraph (U , E) is called graph if |ej | ≤ 2 for all
ej ∈ E [7]. In other words, a hypergraph is a generalization
of a graph.

In [6], Çatalyürek and Aykanat gave two hypergraph rep-
resentation of a sparse matrix, called column net model and
row net model. In this paper, since we only employ the
row net model, we refer the row net model as hypergraph
representation of a matrix.

For a given M × N matrix H = (hi,j), the hypergraph
representation HH = (U , E) is constructed in the following
way. The number of vertices |U| is m and the number of nets
|E| is n. The node ui is connected to the edge ej iff hi,j ̸= 0,
i.e, ui ∈ ej ⇐⇒ hi,j ̸= 0. In other words, the i-th net (resp.
j-th vertex) corresponds to the i-th column (resp. j-th row).

Remark 1: Consider the Tanner graph GH corresponding
to the parity check matrix H. If we transform the variable
nodes (resp. check nodes) in GH to nets (resp. vertices), we
can obtain the hypergraph representation for the parity check
matrix H.

B. Hypergraph Partitioning Problem
A family Π = {U1,U2, . . . ,UK} of non-empty subsets of

U is a K-way hypergraph partition of H = (U , E) if the
followings are satisfied:

• Each pair of parts is disjoint, i.e, Ui ∩ Uj = ∅ for all
1 ≤ i < j ≤ K.

• Union of K parts is equal to U , i.e,
⋃K

i=1 Ui = U .
For a fixed partition Π, if a net e ∈ E connects to a node

u in a part Ui, we call that the net e connects to the part Ui.
Denote the set of nets connecting to a part Ui, by N (Ui). A
net is called cut if the net connects to more than one parts.
For a fixed partition Π, the set of cuts is called cut set and
denoted by X (Π). The cutsize of Π is given by |X (Π)|.

A partition is balanced [6] if the following holds:

max
i

|Ui| ≤
|U|
K

(1 + ϵ),

where ϵ ≥ 0 represents the predetermined maximum imbal-
ance ratio.

The K-way hypergraph partitioning problem is described
as follows: For a given hypergraph (U , E), derive a balanced
K-way partition Π such that |X (Π)| is minimized. The hy-
pergraph partitioning problem is NP-hard [8]. However, there
exist several heuristic algorithms. PaToH [9], [10] is a heuristic
algorithm solving hypergraph partitioning problem. This paper
employs PaToH to solve hypergraph partitioning problem.

IV. PARALLEL ENCODING ALGORITHM

In this section, we propose a parallel encoding algorithm
based on block-diagonalization. The precoding step of the pro-
posed algorithm firstly transforms a given parity check matrix
into a singly bordered (SB) block-diagonal form. Secondly, the
precoding step of the proposed algorithm rearranges the rows
and columns of the diagonal submatrices in the SB block-
diagonal matrix.

This section is organized as follows. Section IV-A intro-
duces transformation of a given parity check matrix into a SB
block-diagonal form. Section IV-B rearranges the rows and
columns of the diagonal submatrices in the SB block-diagonal

matrix and constructs a parity part HP . Section IV-C gives
the encoding step of the proposed algorithm. By summarizing
Section IV-A and IV-B, Section IV-D presents the precoding
step of the proposed encoding algorithm. Finally, we evaluate
the complexity of the proposed algorithm in Section IV-E.

A. Singly bordered block-diagonalization

In this section, we define the K-way SB block-diagonal
matrix and introduce K-way SB block-diagonalization for
matrices [11].

Definition 2 (Block matrix): A block matrix is a matrix
whose row and column are partitioned into several sections. A
matrix A of size M ×N with r row partitions and s column
partitions is described as

⎛

⎜⎝
A1,1 A1,2 · · · A1,s

...
...

. . .
...

Ar,1 Ar,2 · · · Ar,s

⎞

⎟⎠ ,

where Ai,j is of size Mi×Nj . Notice that
∑r

i=1 Mi = M and∑s
j=1 Nj = N . We refer the submatrix Ai,j as the (i, j)-th

block and refer i (resp. j) as block column (resp. block row).
Definition 3 (Block diagonal matrix): A block diagonal

matrix is a square matrix whose non-zero blocks form square
submatrices and are only arranged in diagonal blocks. A block
diagonal matrix with r row and column partitions is denoted
by diag[A1,1, . . . ,Ar,r].

Definition 4 (K-way SB block-diagonal matrix): A SB
block diagonal matrix is a block matrix whose non-zero
blocks are only arranged in diagonal blocks and the last block
column. The M × N matrix is a K-way SB block-diagonal
matrix if the matrix is described as

⎛

⎜⎜⎜⎜⎜⎝

A1 O · · · O B1

O A2 O B2
...

. . .
...

...
O O · · · AK BK

O O · · · O AK+1

⎞

⎟⎟⎟⎟⎟⎠
,

where Ai (resp. Bi) is Mi × Ni (resp. Mi × NK+1) matrix
and MK+1 ≥ 0. In particular, if MK+1 = 0, then a K-way
SB block-diagonal matrix is written in

⎛

⎜⎜⎜⎝

A1 O · · · O B1

O A2 O B2
...

. . .
...

...
O O · · · AK BK

⎞

⎟⎟⎟⎠
.

We refer to transforming matrix H to K-way SB block-
diagonal matrix as K-way SB block-diagonalization of H.

For a given K-way hypergraph partition Π, define UK+1 :=
{u ∈ U | u ̸∈ e ∀e ∈ E \ X (Π)}. In words, UK+1 represents
the set of vertices only connected to X (Π). The following
algorithm provides a K-way SB block-diagonalization of a
parity check matrix H by using K-way hypergraph partition.

Algorithm 1 (SB block-diagonalization):
Input: An M × N parity check matrix H, the number of

partitions K
Output: A K-way SB block-diagonalized matrix HSBBD

K

1) Construct hypergraph representation HH for H.
2) By solving the K-way hypergraph partitioning problem

for HH, provide Π = {Ui}1≤i≤K .
3) (Column-permutation) For i ∈ [1,K] := {1, 2, . . . ,K},

label the columns corresponding to the nets in N (Ui) \
X (Π), by i. Label the columns corresponding to the nets
in X (Π), by K+1. Sort the columns of H in ascending
order of labels.

4) (Row-permutation) For i ∈ [1,K], label the rows corre-
sponding to the vertices in Ui \ UK+1, by i. Label the
rows corresponding to the vertices in UK+1, by K + 1.
Sort the rows of H in ascending order of labels.

5) Output the resulting matrix as HSBBD
K

Remark 2: For i ∈ [1,K], the vertices in Ui \ UK+1

corresponds to the i-th block column of HSBBD. Similarly,
for j ∈ [1,K], the nets in N (Ui) \ X (Π) corresponds to the
j-th block row of HSBBD. Since the nets in N (Ui) \ X (Π)
connects only to vertices in Ui\UK+1, the (i, j)-th block Ai,j

is equal to O for i ̸= j, i, j ∈ [1,K].
Assume that the parity check matrix H ∈ FM×N has full

rank, i.e, rank(H) = M . Then the following lemmas and
proposition hold.

Lemma 1: If H has full rank, MK+1 ≤ NK+1 holds.
Proposition 1: If H has full rank, sub-matrix AK+1 has

full rank, i.e, rank(AK+1) = MK+1.
We can obtain this lemma and proposition in a proof by
contradiction.

Proposition 1 shows that the sub-matrix AK+1 always
has full rank. On the other hand, there is a possibility that
rank(Ai) < Mi for i ∈ [1,K].

B. Construction of Parity Part HP

Assume rank(Ai) = Mi, for all i ∈ [1,K]. As discussed in
Section II, by using conventional encoding algorithm, e.g, the
RU encoding algorithm, we can obtain a pair of permutation
matrix (Pi,Qi) such that HP

i , given by PiAiQi = (HP
i IIi),

is efficiently solved. In this section, we rearrange the rows
and columns of submatrices Ai by using such (Pi,Qi) and
construct the parity part HP .

1) In the case of MK+1 > 0 : Denote PiBiQK+1 =
(BP

i BI
i) for i ∈ [1,K], where BP

i (resp. BI
i) is an

Mi ×MK+1 (resp. Mi × (NK+1 −MK+1)) matrix. By the
column permutation matrix diag[P1,P2, . . . ,PK+1] and the
row permutation matrix diag[Q1,Q2, . . . ,QK+1], the matrix
HSBBD

K is transformed as:
⎛

⎜⎜⎜⎜⎜⎝

AP
1 AI

1 O O · · · O O BP
1 BI

1

O O AP
2 AI

2 O O BP
2 BI

2
...

...
. . .

...
...

...
...

O O O O · · · AP
K AI

K BP
K BI

K
O O O O · · · O O AP

K+1 AI
K+1

⎞

⎟⎟⎟⎟⎟⎠

The submatrix HP (resp. HI) is constructed from the odd
(resp. even) block columns, i.e,

HP =

⎛

⎜⎜⎜⎝

AP
1 · · · O BP

1
...

. . .
...

...
O · · · AP

K BP
K

O · · · O AP
K+1

⎞

⎟⎟⎟⎠
, (4)

HI =

⎛

⎜⎜⎜⎝

AI
1 · · · O BI

1
...

. . .
...

...
O · · · AI

K BI
K

O · · · O AI
K+1

⎞

⎟⎟⎟⎠
=:

⎛

⎜⎜⎜⎝

HI
1

...
HI

K
HI

K+1

⎞

⎟⎟⎟⎠
. (5)

2) In the case of MK+1 = 0 : Define BI
i := PiBi. In a

similar way to the previous section, by the column permutation
matrix diag[P1, . . . ,PK] and the row permutation matrix
diag[Q1, . . . ,QK , I], the matrix HSBBD

K is transformed as:
⎛

⎜⎜⎜⎝

AP
1 AI

1 O O · · · O O BI
1

O O AP
2 AI

2 O O BI
2

...
...

. . .
...

...
...

O O O O · · · AP
K AI

K BI
K

⎞

⎟⎟⎟⎠
.

The submatrix HP (resp. HI) is constructed as:

HP =

⎛

⎜⎝
AP

1 O
. . .

O AP
K

⎞

⎟⎠ , (6)

HI =

⎛

⎜⎝
AI

1 · · · O B1
...

. . .
...

...
O · · · AI

K BK

⎞

⎟⎠ =:

⎛

⎜⎝
HI

1
...

HI
K

⎞

⎟⎠ . (7)

Since det(HP) =
∏

i det(A
P
i) ̸= 0, the parity part HP is

non-singular. In other words, there is an unique solution of
HPp = −HIm for a given m.

3) Construction Algorithm: Let I{·} be the indicator func-
tion which is equal to 1 if the condition inside the braces
is fulfilled and 0 otherwise. The construction of parity part
HP and information part HI is summarized as the following
algorithm.

Algorithm 2 (Construction of HP and HI):
Input: A K-way SB block diagonal matrix HSBBD

K with
rank(Ai) = Mi for all i ∈ [1,K + 1]
Output: Parity part HP and information part HI

1) By using ATM(Ai) → (AATM
i ,Pi,Qi,Φ

−1
i), get

(Pi,Qi) for all i ∈ [1,K + I{MK+1 > 0}].
2) If MK+1 > 0 holds, then construct HI and HP as in

Section IV-B1. Otherwise, constrict HI and HP as in
Section IV-B2.

Remark 3: In Step 1, Algorithm 2 employs the RU encod-
ing algorithm to get permutation matrices (Pi,Qi). Naturally,
we can employ other encoding algorithms to get permutation
matrices (Pi,Qi). In other words, we can replace the RU
algorithm used in Step 1 with other encoding algorithm which
gives (Pi,Qi).

C. Encoding Step
Let p (resp. m) be partitioned into K + 1 parts pi (resp.

mi) of length Mi (resp. Ni −Mi). Then, the encoding step
of the proposed algorithm is the following.

1) In the case of MK+1 > 0: From (4) and (5), we have

AP
i pi+BP

i pK+1 = −AI
imi −BI

imK+1, ∀i ∈ [1,K], (8)
AP

K+1pK+1 = −AI
K+1mK+1. (9)

Notice that from (8), pi for i ∈ [1,K] is solved if pK+1 is
given. Hence, the encoding algorithm is given as follows:

1) Solving (9), derive pK+1.
2) Parallelly solving (8), derive pi for all i ∈ [1,K].

Notice that AP
i pi = b is efficiently solved by some conven-

tional methods, e.g, the RU algorithm.
2) In the case of MK+1 = 0: From (6) and (7), we have

AP
i pi = −AI

imi −BI
imK+1, ∀i ∈ [1,K]. (10)

Notice that pi is derived independently each other, from (10).
Hence the encoding algorithm is given as follows:

1) Parallelly solving (10), derive pi for all i ∈ [1,K].
Therefore, the proposed encoding algorithm efficiently works
in the K-processor system if MK+1 = 0 holds.

D. Precoding Step
By summarizing Section IV-A and IV-B, this section gives

the precoding step of the proposed algorithm.
Algorithm 3 (Precoding step):

Input: An M × N full-rank parity check matrix H, the
maximum number of partitions Kmax

Output: Parity part HP and information part HI

1) Set K ← Kmax.
2) Inputting H and K to Algorithm 1, get HSBBD

K .
3) If rank(Ai) = mi for all i ∈ [1,K], then go to Step 5.

Otherwise, set K ← K − 1 and go to the next step.
4) If K > 1, then go to Step 2. Otherwise, go to the next

step.
5) Construct HP and HI , by using Algorithm 2 with input

HSBBD
K .

Remark 4: As discussed in Section IV-C, MK+1 = 0 is
desired since the encoding algorithm parallelly works. Hence,
Step 2 should be repeated until MK+1 = 0 holds.

E. Complexity
In this section, we evaluate the encoding complexity in the

case of employing the RU algorithm to derive permutation
matrices (Pi,Qi). More precisely, we compute the number
of multiplication and addition of the proposed algorithm.

Then, matrix AP
i is described as

(
Ti Ci

Di Ei

)
and Φi :=

Ei −DiT
−1
i Ci.

In the case of MK+1 = 0, from (10), the numbers of
multiplication µi and addition αi for deriving pi are given
in a similar way of Section II-B

µi = wt(HI
i) + 2wt(Ti) + wt(Ci) + wt(Di) + wt(Φ−1

i),

αi = S(HI
i) + 2S(Ti) + S(Ci) + S(Di) + S(Φ−1

i) +Mi.

TABLE I
THE BLOCK SIZE OF HSBBD

2 FOR SOME CODES IN [12]

Name (N,M) (N1,M1) (N2,M2) (N3,M3)
PEGReg504x1008 (1008, 504) (277,251) (272,253) (459,0)
PEGReg252x504 (504, 252) (128,126) (141,126) (235,0)
PEGirReg504x1008 (1008, 504) (302,252) (313,252) (393,0)
PEGirReg252x504 (504, 252) (149,126) (154,126) (201,0)
32000.2240.3.105 (32000, 2240) (5656,1000) (6116,1140) (20228,0)
16383.2130.3.103 (16383, 2130) (3365,1055) (3471,1075) (9547,0)
4095.737.3.101 (4095, 737) (893,369) (902,368) (2300,0)
10000.10000.3.631 (20000,10000) (5764,4904) (6166,5096) (8120,0)
8000.4000.3.483 (8000, 4000) (2373,1990) (2400,2010) (3227,0)
4000.2000.3.243 (4000, 2000) (1158,989) (1209,1011) (1633,0)
504.504.3.504 (1008, 504) (301,253) (297,251) (410,0)

TABLE II
COMPARISON OF ENCODING COMPLEXITY FOR THE PROPOSED

ALGORITHM WITH THE RU ALGORITHM

Name RU Algorithm Proposed Algorithm
µ/α (δ) µ1/α1 (δ1) µ2/α2 (δ2)

PEGReg504x1008 4599/3542 (21) 2369/1802 (23) 2384/1819 (23)
PEGReg252x504 2283/1739 (16) 1125/839 (13) 1124/843 (13)
PEGirReg504x1008 5068/4058 (1) 2587/2079 (2) 2599/2093 (1)
PEGirReg252x504 2560/2054 (1) 1284/1028 (2) 1289/1034 (1)
32000.2240.3.105 102659/98159 (7) 50366/48136 (10) 52180/49871 (10)
16383.2130.3.103 55472/51164 (16) 27453/25298 (15) 28055/25848 (19)
4095.737.3.101 14418/12915 (10) 7192/6428 (9) 7174/6412 (9)
10000.10000.3.631 144200/123378 (337) 87501/76950 (302) 96271/85278 (325)
8000.4000.3.483 45006/36709 (141) 23913/19638 (117) 25204/20868 (127)
4000.2000.3.243 20240/16075 (74) 10417/8279 (64) 10475/8298 (61)
504.504.3.504 4572/3517 (19) 2262/1721 (14) 2273/1729 (16)

In the case of MK+1 > 0, the numbers of multiplication µ∗
i

and addition α∗
i for deriving pi are given in a similar way of

Section II-B

µ∗
i =wt(HI

i) + 2wt(Ti) + wt(Ci) + wt(Di) + wt(Φ−1
i)

+ wt(BP
i),

α∗
i =S(HI

i) + 2S(Ti) + S(Ci) + S(Di) + S(Φ−1
i) + 2Mi

+ S(BP
i).

V. NUMERICAL EXAMPLES

In this section, we give some numerical examples of the
proposed encoding algorithm and compare the complexity
of the proposed encoding algorithm with the RU encoding
algorithm.

A. Examples of SB Block-Diagonalization
In this section, we transform some parity check matrices

given in [12] into 2-way SB block-diagonal matrices by Al-
gorithm 1. From Table I, we see that Algorithm 1 gives 2-way
SB block diagonal matrices with M3 = 0 for those examples.
In other words, the parity part p1,p2 can be parallelly and
simultaneously solved. Moreover, we see that M1 is nearly
equal to M2. In other words, the size of diagonal blocks are
nearly equal.

B. Comparison of Encoding Complexity
In this section, we calculate the number of operations of

the proposed encoding algorithm and compare with that of
the RU algorithm. In those numerical examples, at first, we
construct HP and HI by using Algorithm 2, where the inputs
of Algorithm 2 are 2-way SB block-diagonal matrix given in

Table I. Next, we calculate the number of operations for the
HP and HI from equations in Section IV-E. The number of
operations are given in Table II.

Table II shows the numbers of multiplication µ and addition
α for the RU algorithm and the proposed algorithm. In the first
column of Table II gives the name of codes given in [12]. The
second column of Table II gives the number of operations µ,α
and the gap δ of the approximate triangular matrix. The third
(resp. fourth) column gives the number of operations and the
gap for deriving p1 (resp. p2). Since the derivation of p1 and
p2 are carried out two processors, µ1 and α1 (resp. µ2 and α2)
show the numbers of operations of the first processor (resp.
second processor).

From Table I, we see that, the number of operations to
derive p1 and p2 are nearly equal. In other words, the proposed
algorithm adequally divides the operation for encoding to two
processors.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we have proposed a parallel encoding algo-
rithm based on block-diagonalization of the parity part of
the parity check matrix. Numerical examples in the paper
have shown that the proposed algorithm adequally divides the
operation for encoding to processors. As a future work, we
will extend this algorithm for the spatially coupled codes.

ACKNOWLEDGMENT

This work was partially supported by JSPS KAKENHI
Grant Number 25889061.

REFERENCES

[1] R. G. Gallager, Low Density Parity Check Codes. in Research
Monograph series, MIT Press, Cambridge, 1963.

[2] T. Richardson and R. Urbanke, “Efficient encoding of low-density parity-
check codes,” IEEE Transactions on Information Theory, vol. 47, no. 2,
pp. 638–656, Feb. 2001.

[3] Y. Kaji, “Encoding LDPC codes using the triangular factorization,”
IEICE Trans. Fundamentals, vol. 89, no. 10, pp. 2510–2518, 2006.

[4] T. Shibuya, “Block-triangularization of parity check matrices for effi-
cient encoding of linear codes,” in Proc. 2011 IEEE Int. Symp. Inf.
Theory (ISIT), July 2011, pp. 533–537.

[5] T. Shibuya and K. Kobayashi, “Efficient linear time encoding for LDPC
codes,” IEICE Trans. Fundamentals, vol. 97, no. 7, pp. 1556–1567,
2014.

[6] U. V. Çatalyürek and C. Aykanat, “Hypergraph-partitioning-based de-
composition for parallel sparse-matrix vector multiplication,” IEEE
Transactions on Parallel and Distributed Systems, vol. 10, no. 7, pp.
673–693, Jul 1999.

[7] C. Berge, Hypergraphs, ser. North-Holland mathematical Library. El-
sevier, 1989.

[8] T. Lengauer, Combinatorial algorithms for integrated circuit layout.
John Wiley & Sons, Inc., 1990.

[9] Ü. V. Çatalyürek, “Hypergraph models for sparse matrix partitioning and
reordering,” Ph.D. dissertation, Computer Engineering and Information
Science Bilkent University, 1999.

[10] Ü. Çatalyürek and C. Aykanat, “PaToH (partitioning tool for hyper-
graphs),” in Encyclopedia of Parallel Computing. Springer, 2011, pp.
1479–1487.

[11] C. Aykanat, A. Pinar, and U. V. Çatalyürek, “Permuting sparse rectan-
gular matrices into block-diagonal form,” SIAM J. Sci. Comput., vol. 25,
no. 6, pp. 1860–1879, Jun. 2004.

[12] D. Mackay, “Encyclopedia of sparse graph codes,”
http://wol.ra.phy.cam.ac.uk/mackay/codes/data.html.

